The main aqueous discharge from oil production platforms is produced water (PW). Produced water is contaminated with a range of pollutants including crude oil, inorganic salts, trace metals, dissolved gases, produced solids and oilfield chemical residues. Concern has been expressed on the impact these discharges, and particularly the dissolved oil component, may be having on the marine environment. In this investigation the toxicity of synthetic produced waters contaminated with petroleum hydrocarbons was compared to PW samples received from the field using the luminescent marine bacterium Vibrio fisheri. The objective was to correlate toxicity to specific PW components. Initial studies of individual oil components showed that both aromatic and aliphatic compounds exhibited toxicity. Naphthalene was the most toxic aromatic compound measured and cycloheptane the most toxic aliphatic. For benzenes, toxicity increased with alkyl substitution. Synthetic PW samples, based on the composition of those obtained offshore, had lower toxicities than the field PW samples. The addition of oilfield chemicals at dosage levels used offshore increased the toxicity of the synthetic PW mixtures, but not to the original values. Removal of the oil components by solid-phase extraction reduced PW toxicity in both synthetic and real samples. The results suggest that a range of hydrocarbons, both aliphatic and aromatic, along with heavy metals and oilfield chemical residues, contribute to the toxicity of produced water. Removal of petroleum hydrocarbons significantly reduces the acute toxicity of produced water. However, differences in toxicity between real and synthetic PW samples suggest that components other than hydrocarbons, heavy metals and oilfield chemical residues, are also influencing the toxicity of the effluent.
The objective of this study was to investigate the quality characteristics of spirits derived from fruit using copper distillation equipment. First, optimal yeast strains were chosen through a fermentation test on raw materials (apples, mandarins and rowanberries). The normal fermentation condition for rowanberries observed at a rowanberry concentration of 8% during mashing included chaptalization with sugar to increase the alcohol content. During the mashing, fruits were fermented and distilled through one of three different types of distillation apparatuses (pot distiller, vacuum distiller, or multistage distiller made of copper). The results revealed that the type of apparatus used affects the content of alcohol and flavor components. The distilled spirits prepared through a copper multistage distiller had a much higher tendency to retain components of fruit aromas such as ethyl acetate and provided higher yields than spirits prepared with a pot distiller or vacuum distiller. Thus, the copper multistage distiller apparatus can be applied to positively influence the taste and flavor of fruit distilled spirits by enhancing fruit aromas, removing impurities such as sulfur components and enhancing yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.