Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (R 2 p ) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.
This study was performed to evaluate the suitability and burning characteristics of thermally-modified wood for use as auto camping charcoal. Four aspects of the burning were measured using a cone calorimeter: ignition time, total heat released, heat release rate, and flame-out time. In addition, elemental analysis was carried out using an elemental analyzer.Thermally-modified wood has short ignition and flame-out times because of its low Oxygen/Carbon rate. The total heat released and the heat release rate of thermally-modified wood is higher than that of other wood due to its low oxygen and nitrogen rate and high HHV (Higher Heating Values). With a shorter flameout time, carbonization takes less time, and the maintenance time is longer. These characteristics of thermally-modified wood make it favorable for use as auto camping charcoal.
This study is performed that furniture and interior materials of MDF's (Medium Density Fiberboard) biodegradation properties, and the goal of this study is investigation of possibility of waste-MDF's composting after landfilling. To investigate biodegradation, this study was performed according to KS M ISO 14855-1, and there were two different soil conditions including a compost condition and an activated vermiculite condition as artificial soil. This experiment was tested for 40 days. The measurement of carbon-dioxide generation was processed every 24 hour in 1-2 week, and every 48 hour after 3 week. In the same days, MDF showed 24.4% of biodegradation in compost condition, and 6.2% in activated vermiculite. Also, the reference material of TLC (thin-layer chromatography) grade cellulose showed 26.4%, 11.4% in compost and activated vermiculite respectively. The dilution plate method was performed for biological analysis in the study. This experiment was used for investigation of inoculum's (Bacillus licheniformis) activity. As the result of bioassay, compost has more other germs include inoculum than activated vermiculite in the first week. Especially in the 2nd week, the reference material under the compost condition showed the most germ's activity, and also the biodegradation was the highest. Consequentially, compost condition was able to reduce a performing period of biodegradation testing than activated vermiculite. However, activated vermiculite could be stabilizing errors between repetition.
The effect of filtered torrefied wood powder as a plant growth retardant was evaluated. The filtered extract was manufactured using torrefied wood powder (Quercus serrata Thunb. Ex. Murray) and distilled water. The filtered extracts were used to create four solutions of varying concentration (1%, 5%, 10%, and 20%). Each solution was applied to various seedlings (Amaranthus retroflexus, Plantago asiatica, Echinochloa crus-galli var.) over the course of six days. Additionally, gas chromatography-mass spectrometry (GC/MS) was performed to investigate how plant growth was affected. The results indicated that higher concentrations of filtered extract delayed seed growth more than solutions of lower concentration. Additionally, the GC/MS analysis of the filtered extract of torrefied wood revealed one phenolic compound and two different types of furan compounds. This study investigated the active components of torrefied wood as plant growth regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.