Understanding and controlling the mechanism by which stem cells balance self-renewal versus differentiation is of great importance for stem cell therapeutics. Klf4 promotes the self-renewal of embryonic stem cells, but the precise mechanism regulating this role of Klf4 is unclear. We found that ERK1 or ERK2 binds the activation domain of Klf4 and directly phosphorylates Klf4 at Ser123. This phosphorylation suppresses Klf4 activity, inducing embryonic stem cell differentiation. Conversely, inhibition of Klf4 phosphorylation enhances Klf4 activity and suppresses embryonic stem cell differentiation. Notably, phosphorylation of Klf4 by ERKs causes recruitment and binding of the F-box proteins βTrCP1 or βTrCP2 (components of an ubiquitin E3 ligase) to the Klf4 N-terminal domain, which results in Klf4 ubiquitination and degradation. Overall, our data provide a molecular basis for the role of ERK1 and ERK2 in regulating Klf4-mediated mouse embryonic stem cell self-renewal.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by transduction of reprogramming factors, including Oct4, Sox2, Klf4, and c-Myc. A coordinated network of these factors was suggested to confer a pluripotency of iPSCs. Together with Oct4, Sox2 plays a major role as a master regulator in ESCs. However, the underlying mechanisms by which Sox2 contributes to selfrenewal or reprogramming processes remain to be determined. Here, we provide new evidence for a phosphorylation-based regulation of Sox2 activity. Akt directly interacts with Sox2 and promotes its stabilization through phosphorylation at Thr118, which enhances the transcriptional activity of Sox2 in ESCs. Moreover, phosphorylation of Sox2 cooperates in the reprogramming of mouse embryonic fibroblasts by enabling more efficient induction of iPSCs. Overall, our studies provide new insights into the regulatory mechanism of Sox2 in ESCs and also provide a direct link between phosphorylation events and somatic cell reprogramming.
PURPOSE Common treatment modalities for non-small cell lung cancer (NSCLC) involve the epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) like gefitinib and erlotinib. However, the vast majority of treated patients acquire resistance to EGFR-TKIs, due in large part to secondary mutations in EGFR or amplification of the MET gene. Our purpose was to test ubiquitin-specific peptidase 8 (USP8) as a potential therapeutic target for gefitinib-resistant and -sensitive non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Testing the effect of knockdown of USP8 and use of a synthetic USP8 inhibitor to selectively kill gefitinib-resistant (or -sensitive) NSCLCs with little effect on normal cells in cell culture and a xenograft mouse model. RESULTS Knockdown of ubiquitin-specific peptidase 8 (USP8) selectively kills gefitinib-resistant NSCLCs, while having little toxicity toward normal cells. Genetic silencing of USP8 led to the down-regulation of several receptor tyrosine kinases (RTKs), including EGFR, ERBB2, ERBB3, and MET. We also determined that a synthetic USP8 inhibitor markedly decreased the viability of gefitinib-resistant and -sensitive NSCLC cells by decreasing RTK expression, while having no effect on normal cells. Moreover, treatment with a USP8 inhibitor led to significant reductions in tumor size in a mouse xenograft model using gefitinib-resistant and -sensitive NSCLC cells. CONCLUSIONS Our results demonstrate for the first time that the inhibition of USP8 activity or reduction in USP8 expression can selectively kill NSCLC cells. We propose USP8 as a potential therapeutic target for gefitinib-resistant and -sensitive NSCLC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.