Needle-shaped aragonite, a thermodynamically metastable polymorph of CaCO 3 , was synthesized in a deinked old newspaper pulp (ONP) slurry, otherwise known as the in-situ aragonite formation process, in order to improve the optical properties such as the brightness and ERIC value (effective residual ink concentration) as well as to preserve the strength properties such as the breaking length of the resultant handsheet. The brightness and ERIC value of the handsheet obtained from pulp that was subjected to the in-situ aragonite formation process was improved by 20.4% (from 56.8 to 68.4%) and 55.4% (from 292.1 to 130.4 ppm), respectively, relative to a raw ONP sample. The effects of the in-situ aragonite formation process on the resultant handsheet were compared with the results obtained from a similar process in which rhombohedraltype calcite was synthesized instead of the needle-shaped aragonite. From the comparison, it can be concluded that the in-situ aragonite formation process provides better optical and strength properties to the resultant handsheet than that of calcite, and this is attributed to the needleshaped morphology of aragonite.
The grafting reaction for maleic anhydride (MA) onto high density polyethylene (HDPE) was investigated from solution process with initiators. The chemical modification of neat HDPE was carried out with various contents of MA (3-21 wt.%) and initiator (0.2-1 wt.%) at different temperature (80-130 o C). The grafting degree was obtained from the titration and the highest grafting degree was 3.1%. The grafting degree increased as the content of MA and initiator increased, however, the highest grafting degree was demonstrated for a particular content of MA and initiator. In the non-isothermal crystallization kinetics, the Ozawa model was unsuitable method to investigate the crystallization behavior of MA onto HDPE, whereas the Avrami and Liu models found effective. The crystallization rate was accelerated as the cooling rate increased, but postponed by combination of MA onto neat HDPE backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.