This paper presents the development of Short Term Load Forecasting (STLF) model using Artificial Neural Network (ANN). STLF is required for electric power planning and electricity market planning. The proposed model predicts the load demand of Connecticut in the U.S. using hourly historical electric load and weather data. For improving the load prediction accuracy, we consider two main issues that are seasons and weather factors. Each season has different load demand patterns, thus the weather factors are differently applied in each season. The proposed model uses the composited weather factor which consists of temperature and dew point. The temperature and dew point weather factors are selected through the correlation coefficient to obtain the meaningful data among the weather factors. The selected weather factors adjust the level of the pitch which is the predicted load demand of one day ahead. The proposed model improves the forecasting accuracy both in summer and winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.