Abstract-MicroRNAs are naturally existing, small, noncoding RNA molecules that downregulate posttranscriptional gene expression. Their expression pattern and function in the heart remain unknown. Here we report an array of microRNAs that are differentially and temporally regulated during cardiac hypertrophy. Significantly, the muscle-specific microRNA-1 (miR-1) was singularly downregulated as early as day 1 (0.56Ϯ0.036), persisting through day 7 (0.29Ϯ0.14), after aortic constriction-induced hypertrophy in a mouse model. Overexpression experiments showed that miR-1 inhibited its in silico-predicted, growth-related targets, including Ras GTPase-activating protein (RasGAP), cyclin-dependent kinase 9 (Cdk9), fibronectin, and Ras homolog enriched in brain (Rheb), in addition to protein synthesis and cell size. Thus, we propose that microRNAs play an essential regulatory role in the development of cardiac hypertrophy, wherein downregulation of miR-1 is necessary for the relief of growth-related target genes from its repressive influence and induction of hypertrophy. (Circ Res. 2007;100:416-424.)
MicroRNA-21 (miR-21) is highly up-regulated during hypertrophic and cancerous cell growth. In contrast, we found that it declines in cardiac myocytes upon exposure to hypoxia. Thus, the objective was to explore its role during hypoxia. We show that miR-21 not only regulates phosphatase and tensin homologue deleted on chromosome 10 (PTEN), but also targets Fas ligand (FasL). During prolonged hypoxia, down-regulation of miR-21 proved necessary and sufficient for enhancing expression of both proteins. We demonstrate here for the first time that miR-21 is positively regulated via an AKT-dependent pathway, which is depressed during prolonged hypoxia. Accordingly, hypoxia-induced down-regulation of miR-21 and up-regulation of FasL and PTEN were reversed by activated AKT and reproduced by a dominant negative mutant, wortmannin, or PTEN. Moreover, the antiapoptotic function of AKT partly required miR-21, which was sufficient for inhibition of caspase-8 activity and mitochondrial damage. In consensus, overexpression of miR-21 in a transgenic mouse heart resulted in suppression of ischemia-induced up-regulation of PTEN and FasL expression, an increase in phospho-AKT, a smaller infarct size, and ameliorated heart failure. Thus, we have identified a unique aspect of the function of AKT by which it inhibits apoptosis through miR-21-dependent suppression of FasL. MicroRNA (miRNA)3 are molecules approximately twenty ribonucleotides long that specifically target mRNA through partial complementarity and, thereby, inhibit translation and/or induce their degradation. miR-21 is one of the most commonly and dramatically up-regulated miRNA in many cancers (1, 2) and has been implicated in the inhibition of programmed cell death (2). Some of its validated targets include tropomyosin 1 (3), PTEN (2, 4, 5), programmed cell death 4 (Pdcd4) (6, 7), TAp63 isoform of p53 family, and LRRFIP1, an inhibitor of NFB signaling (8). Similarly, miR-21 is one of the most highly and consistently up-regulated miRNA during cardiac hypertrophy (9 -12). Thum et al. (13) show that miR-21 is predominantly up-regulated in the myofibroblasts where it targets sprouty1 and enhances their survival and, thereby, fibrosis in the heart. Similarly, Roy et al. (14) show that miR-21 is elevated in the myofibroblast-infiltrated area 7 days after ischemia/ reperfusion and suppresses metalloprotease-2 via targeting PTEN. More recently, studies have shown that miR-21 exerts an antiapoptotic function in cardiac myocytes via inhibiting PDCD4 (15) and reduces infarct size via local viral delivery to the heart (16). However, the signaling pathway that regulates miR-21 has not been identified.Two of the molecules that play a major role in ischemic injury of the heart include PTEN and FasL. PTEN is a major negative regulator of AKT (17) whose activity is modulated by its abundance, oxidation, or phosphorylation (18). It is also targeted by miR-21, which provides a specific post-transcriptional mechanism for regulating its expression (2, 4, 5). PTEN has been regarded as the A...
Background-The adaptation of cardiac mass to hemodynamic overload requires an adaptation of protein turnover, ie, the balance between protein synthesis and degradation. We tested 2 hypotheses: (1) chronic left ventricular hypertrophy (LVH) activates the proteasome system of protein degradation, especially in the myocardium submitted to the highest wall stress, ie, the subendocardium, and (2) the proteasome system is required for the development of LVH. Methods and Results-Gene and protein expression of proteasome subunits and proteasome activity were measured separately from left ventricular subendocardium and subepicardium, right ventricle, and peripheral tissues in a canine model of severe, chronic (2 years) LVH induced by aortic banding and then were compared with controls. Both gene and protein expressions of proteasome subunits were increased in LVH versus control (PϽ0.05), which was accompanied by a significant (PϽ0.05) increase in proteasome activity. Posttranslational modification of the proteasome was also detected by 2-dimensional gel electrophoresis. These changes were found specifically in left ventricular subendocardium but not in left ventricular subepicardium, right ventricle, or noncardiac tissues from the same animals. In a mouse model of chronic pressure overload, a 50% increase in heart mass and a 2-fold increase in proteasome activity (both PϽ0.05 versus sham) were induced. In that model, the proteasome inhibitor epoxomicin completely prevented LVH while blocking proteasome activation. Conclusions-The increase in proteasome expression and activity found during chronic pressure overload in myocardium submitted to higher stress is also required for the establishment of LVH. Key Words: heart diseases Ⅲ hypertrophy Ⅲ physiology Ⅲ pressure Ⅲ stress Ⅲ proteins L eft ventricular hypertrophy (LVH) is a key compensatory mechanism in response to pressure or volume overload that involves alterations in the regulation of signal transduction pathways, transcription factors, excitation-contraction coupling, contractile proteins, and energy metabolism. One key element of cardiac hypertrophy is an adaptation in protein turnover. Protein turnover refers to protein synthesis and degradation, and both mechanisms are activated by increased cardiac workload. 1,2 Although multiple studies have addressed the activation of protein synthesis during the acute phase of LVH that follows aortic banding, the mechanisms controlling protein degradation in the hypertrophied myocardium, especially over the long term, remain largely unknown. A key mechanism involved in protein degradation is the ubiquitin/proteasome system (UPS), 3 which is known to be an important mechanism mediating muscle atrophy. 4,5 Proteolytic substrates are ligated to multiple ubiquitin (Ub) moieties that are assembled into a chain that binds the proteasome with high affinity. The 26S proteasome contains multiple subunits in the regulatory (19S) particle that can bind multiubiquitinated (multi-Ub) proteins. 6,7 The composition of the proteasome is highl...
The sympathetic nervous system is designed to respond to stress. Adenylyl cyclase (AC) is the keystone of sympathetic transmission, yet its role in response to acute overload in the heart or in the pathogenesis of heart failure is controversial. We examined the effects of pressure overload, induced by thoracic aortic banding, in mice in which type 5 AC, a major cardiac AC isoform, was disrupted (AC5 ؊/؊ ). Left ventricular weight͞tibial length ratio (LVW͞TL) was not different between the WT and AC5 ؊/؊ at baseline and increased progressively and similarly in both groups at 1 and 3 wk after aortic banding. However, LV ejection fraction (LVEF) fell in WT at 3 wk after banding (from 70 ؎ 2.8 to 57 ؎ 3.9%, P < 0.05), and this decrease was associated with LV dilatation, indicating incipient cardiac failure. In contrast, AC5 ؊/؊ mice did not exhibit a fall in LVEF from 74 ؎ 2.2%. The number of apoptotic myocytes was similar at baseline, but it increased roughly 4-fold in WT at both 1 and 3 wk after banding, and significantly less, P < 0.05, in AC5 ؊/؊ . Importantly, the increase in apoptosis occurred before the decline in LVEF in WT. The protective mechanism seems to involve Bcl-2, which was up-regulated significantly more in AC5 ؊/؊ mice with pressure overload. Our findings suggest that limiting type 5 AC plays a protective role in response to pressure overload and the development of heart failure, potentially through limiting the incidence of myocardial apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.