Data augmentation is critical to the success of modern deep learning techniques. In this paper, we propose Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug), an economical solution that learns the augmentation policy distribution along with network training. Unlike previous methods on auto-augmentation that search augmentation strategies in an offline manner, our method formulates the augmentation policy as a parameterized probability distribution, thus allowing its parameters to be optimized jointly with network parameters. Our proposed OHL-Auto-Aug eliminates the need of re-training and dramatically reduces the cost of the overall search process, while establishes significantly accuracy improvements over baseline models. On both CIFAR-10 and ImageNet, our method achieves remarkable on search accuracy, i.e. 60× faster on CIFAR-10 and 24× faster on ImageNet, while maintaining competitive accuracies.
Designing an effective loss function plays an important role in visual analysis. Most existing loss function designs rely on hand-crafted heuristics that require domain experts to explore the large design space, which is usually suboptimal and time-consuming. In this paper, we propose Au-toML for Loss Function Search (AM-LFS) which leverages REINFORCE to search loss functions during the training process. The key contribution of this work is the design of search space which can guarantee the generalization and transferability on different vision tasks by including a bunch of existing prevailing loss functions in a unified formulation. We also propose an efficient optimization framework which can dynamically optimize the parameters of loss function's distribution during training. Extensive experimental results on four benchmark datasets show that, without any tricks, our method outperforms existing hand-crafted loss functions in various computer vision tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.