Large evaporite provinces (LEPs) represent prodigious volumes of evaporites widely developed from the Sinian to Neogene. The reasons why they often quickly develop on a large scale with large areas and thicknesses remain enigmatic. Possible causes range from warming from above to heating from below. The fact that the salt deposits in most salt-bearing basins occur mainly in the Sinian-Cambrian, Permian-Triassic, Jurassic-Cretaceous, and Miocene intervals favours a dominantly tectonic origin rather than a solar driving mechanism. Here, we analysed the spatio-temporal distribution of evaporites based on 138 evaporitic basins and found that throughout the Phanerozoiceon, LEPs occurred across the Earth’s surface in most salt-bearing basins, especially in areas with an evolutionary history of strong tectonic activity. The masses of evaporites, rates of evaporite formation, tectonic movements, and large igneous provinces (LIPs) synergistically developed in the Sinian-Cambrian, Permian, Jurassic-Cretaceous, and Miocene intervals, which are considered to be four of the warmest times since the Sinian. We realize that salt accumulation can proceed without solar energy and can generally be linked to geothermal changes in tectonically active zones. When climatic factors are involved, they may be manifestations of the thermal influence of the crust on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.