Because of the relative location between the ship and the bank, the fluid flow becomes complicated such that unstable hydrodynamic forces result in the yaw movement of the ship in an unintended direction. To consider the nonlinear effect, this study calculated the lateral force and yaw moment of barges with different shapes in confined waters, using computational fluid dynamics (CFD). We analyzed the effect of the reflected waves from the bank on the barges. The sway force tended to increase as both barges became closer to the bank, because it worked as a suction force that pulled them toward the closest bank. The yaw moment increased as the barges became closer to the bank, regardless of the shape of the bow. At y′ = 0.2B, when the barges were at the closest to the bank, it rapidly soared. The wave pattern showed that the diverging waves from the shoulder did not disperse, and were blocked by the bank and returned to the ship; such phenomena resulted in changing the hydrodynamic force on the barge. It is determined that the effect of free surface must be considered when conducting a comprehensive analysis of the bank effect when the ship is close to the bank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.