We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.
As an increasing number of reliable protein–protein interactions (PPIs) become available and high-throughput experimental methods provide systematic identification of PPIs, there is a growing need for fast and accurate methods for discovering homologous PPIs of a newly determined PPI. PPISearch is a web server that rapidly identifies homologous PPIs (called PPI family) and infers transferability of interacting domains and functions of a query protein pair. This server first identifies two homologous families of the query, respectively, by using BLASTP to scan an annotated PPIs database (290 137 PPIs in 576 species), which is a collection of five public databases. We determined homologous PPIs from protein pairs of homologous families when these protein pairs were in the annotated database and have significant joint sequence similarity (E ≤ 10−40) with the query. Using these homologous PPIs across multiple species, this sever infers the conserved domain–domain pairs (Pfam and InterPro domains) and function pairs (Gene Ontology annotations). Our results demonstrate that the transferability of conserved domain-domain pairs between homologous PPIs and query pairs is 88% using 103 762 PPI queries, and the transferability of conserved function pairs is 69% based on 106 997 PPI queries. The PPISearch server should be useful for searching homologous PPIs and PPI families across multiple species. The PPISearch server is available through the website at http://gemdock.life.nctu.edu.tw/ppisearch/.
To obtain an enzyme for the production of chito-disaccharides (GlcN(2)) by converting endo-chitosanase to exo-chitosanase, we chose an endo-chitosanase from Bacillus circulans MH-K1 (Csn) as the candidate for protein engineering. Using molecular modeling, two peptides with five amino acids (PCLGG) and six amino acids (SRTCKP) were designed and inserted after the positions of D(115) and T(222) of Csn, respectively. The inserted fragments are expected to form loops that might protrude from opposite walls of the substrate-binding cleft, thus forming a 'roof' over the catalytic site that might alter the product specificity. The chimeric chitosanase (Chim-Csn) and wild-type chitosanase (WT-Csn) were both over-expressed in Escherichia coli and purified nearly to homogeneity. The products formed from chitosan were analyzed by ESI-MS (electrospray ionization-mass spectrometry). A mixture of GlcN(2), GlcN(3) and GlcN(4) was obtained with WT-Csn, whereas Chim-Csn formed, with a smaller catalytic rate (3% of WT-Csn activity), GlcN(2) as the dominant product. Measurements of viscosity showed that, with similar amounts of enzyme activity, Chim-Csn catalyzed the hydrolysis of chitosan with a smaller rate of viscosity decrease than WT-Csn. The results indicate that, on inserting two surface loops, the endo-type chitosanase was converted into an exo-type chitosanase, which to our knowledge is the first chitosanase that releases GlcN(2) from chitosan as the dominant product.
Prolapse of subconjunctival orbital fat is an uncommon entity of intraorbital masses and may mimic adipocytic neoplasm. It is usually associated with a dehiscence in the Tenon capsule. Surgical excision is indicated and pathologic evaluation is necessary if any malignancy is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.