This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein–DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are essential for correct gene regulation. In this respect, ProteDNA is distinctive since it has been designed to identify sequence-specific binding residues. In order to accommodate users with different application needs, ProteDNA has been designed to operate under two modes, namely, the high-precision mode and the balanced mode. According to the experiments reported in this article, under the high-precision mode, ProteDNA has been able to deliver precision of 82.3%, specificity of 99.3%, sensitivity of 49.8% and accuracy of 96.5%. Meanwhile, under the balanced mode, ProteDNA has been able to deliver precision of 60.8%, specificity of 97.6%, sensitivity of 60.7% and accuracy of 95.4%. ProteDNA is available at the following websites:http://protedna.csbb.ntu.edu.tw/http://protedna.csie.ntu.edu.tw/http://bio222.esoe.ntu.edu.tw/ProteDNA/.
BackgroundRNA-binding proteins (RBPs) play crucial roles in post-transcriptional control of RNA. RBPs are designed to efficiently recognize specific RNA sequences after it is derived from the DNA sequence. To satisfy diverse functional requirements, RNA binding proteins are composed of multiple blocks of RNA-binding domains (RBDs) presented in various structural arrangements to provide versatile functions. The ability to computationally predict RNA-binding residues in a RNA-binding protein can help biologists reveal important site-directed mutagenesis in wet-lab experiments.ResultsThe proposed prediction framework named “ProteRNA” combines a SVM-based classifier with conserved residue discovery by WildSpan to identify the residues that interact with RNA in a RNA-binding protein. Although these conserved residues can be either functionally conserved residues or structurally conserved residues, they provide clues on the important residues in a protein sequence. In the independent testing dataset, ProteRNA has been able to deliver overall accuracy of 89.78%, MCC of 0.2628, F-score of 0.3075, and F0.5-score of 0.3546.ConclusionsThis article presents the design of a sequence-based predictor aiming to identify the RNA-binding residues in a RNA-binding protein by combining machine learning and pattern mining approaches. RNA-binding proteins have diverse functions while interacting with different categories of RNAs because these proteins are composed of multiple copies of RNA-binding domains presented in various structural arrangements to expand the functional repertoire of RNA-binding proteins. Furthermore, predicting RNA-binding residues in a RNA-binding protein can help biologists reveal important site-directed mutagenesis in wet-lab experiments.
BackgroundProtein-DNA interactions are essential for fundamental biological activities including DNA transcription, replication, packaging, repair and rearrangement. Proteins interacting with DNA can be classified into two categories of binding mechanisms - sequence-specific and non-specific binding. Protein-DNA specific binding provides a mechanism to recognize correct nucleotide base pairs for sequence-specific identification. Protein-DNA non-specific binding shows sequence independent interaction for accelerated targeting by interacting with DNA backbone. Both sequence-specific and non-specific binding residues contribute to their roles for interaction.ResultsThe proposed framework has two stage predictors: DNA-binding residues prediction and binding mode prediction. In the first stage - DNA-binding residues prediction, the predictor for DNA specific binding residues achieves 96.45% accuracy with 50.14% sensitivity, 99.31% specificity, 81.70% precision, and 62.15% F-measure. The predictor for DNA non-specific binding residues achieves 89.14% accuracy with 53.06% sensitivity, 95.25% specificity, 65.47% precision, and 58.62% F-measure. While combining prediction results of sequence-specific and non-specific binding residues with OR operation, the predictor achieves 89.26% accuracy with 56.86% sensitivity, 95.63% specificity, 71.92% precision, and 63.51% F-measure. In the second stage, protein-DNA binding mode prediction achieves 75.83% accuracy while using support vector machine with multi-class prediction.ConclusionThis article presents the design of a sequence based predictor aiming to identify sequence-specific and non-specific binding residues in a transcription factor with DNA binding-mechanism concerned. The protein-DNA binding mode prediction was introduced to help improve DNA-binding residues prediction. In addition, the results of this study will help with the design of binding-mechanism concerned predictors for other families of proteins interacting with DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.