The molecular mechanism of apatite formation on bioactive glass surface is studied using the techniques of XRD, EDX, SEM, FT-IR, and solid-state 31 P NMR. Using the sol-gel method a bioactive glass system containing glass beads of 2 to 3 microns in size is prepared with the composition containing 30% CaO -70% SiO 2 . Our experimental data support the apatite formation mechanism proposed by Hench concerning the precipitation and crystallization of calcium phosphate. The phosphate ions initially deposited on the glass surface are largely in amorphous phase and have substantial amount of water molecules in the surrounding. As the soaking time in simulated body fluid increases, some of the water molecules diffuse out of the phosphate lattice, leading to the formation of a crystalline phase. Our data show that the structure of the crystalline phase is different from type B carbonate apatite but similar to hydroxyapatite.
A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.