Plasmacytoid dendritic cells (pDCs) produce copious type I interferon (IFN) upon sensing nucleic acids through Toll-like receptor (TLR) 7 and TLR9. Uncontrolled pDC activation and IFN production are implicated in lymphopenia and autoimmune diseases; therefore, a mechanism controlling pDC IFN production is essential. Human pDCs specifically express an orphan receptor, immunoglobulin-like transcript 7 (ILT7). Here, we discovered an ILT7 ligand expressed by human cell lines and identified it as bone marrow stromal cell antigen 2 (BST2; CD317). BST2 directly binds to purified ILT7 protein, initiates signaling via the ILT7–FcεRIγ complex, and strongly inhibits production of IFN and proinflammatory cytokines by pDCs. Readily induced by IFN and other proinflammatory cytokines, BST2 may modulate the human pDC’s IFN responses through ILT7 in a negative feedback fashion.
BackgroundQi-shen-yi-qi (QSYQ), one of the most well-known traditional Chinese medicine (TCM) formulas, has been shown to have cardioprotective effects in rats with heart failure (HF) induced by acute myocardial infarction (AMI). However, the mechanisms of its therapeutic effects remain unclear. In this study, we aim to explore the mechanisms of QSYQ in preventing left ventricular remodelling in rats with HF. The anti-apoptosis an anti-inflammation effects of QSYQ were investigated.MethodsSprague–Dawley (SD) rats were randomly divided into 4 groups: sham group, model group, QSYQ treatment group and aspirin group. Heart failure model was induced by ligation of left anterior descending (LAD) coronary artery. 28 days after surgery, hemodynamics were detected. Echocardiography was adopted to evaluate heart function. TUNEL assay was applied to assess myocardial apoptosis rates. Protein expressions of cyclooxygenase1 and 2 (COX1and COX2), Fas ligand (FasL), P53 and MDM2 were measured by western-blot. RT-PCR was applied to detect expressions of our subtype receptors of PGE2 (EP1, 2, 3, and 4).ResultsUltrasonography showed that EF and FS values decreased significantly and abnormal hemodynamic alterations were observed in model group compared to sham group. These indications illustrated that HF models were successfully induced. Levels of inflammatory cytokines (TNF-α and IL-6) in myocardial tissue were up-regulated in the model group as compared to those in sham group. Western-blot analysis showed that cyclooxygenase 2, which is highly inducible by inflammatory cytokines, increased significantly. Moreover, RT-PCR showed that expressions of EP2 and EP4, which are the receptors of PGE2, were also up-regulated. Increased expressions of apoptotic pathway factors, including P53 and FasL, might be induced by the binding of PGE2 with EP2/4. MDM2, the inhibitor of P53, decreased in model group. TUNEL results manifested that apoptosis rates of myocardial cells increased in the model group. After treatment with QSYQ, expressions of inflammatory factors, including TNF-α, IL-6 and COX2, were reduced. Expressions of EP2 and EP4 receptors also decreased, suggesting that PGE2-mediated apoptosis was inhibited by QSYQ. MDM2 was up-regulated and P53 and FasL in the apoptotic pathway were down-regulated. Apoptosis rates in myocardial tissue in the QSYQ group decreased compared with those in the model group.ConclusionsQSYQ exerts cardiac protective efficacy mainly through inhibiting the inflammatory response and down-regulating apoptosis. The anti-inflammatory and anti-apoptosis efficacies of QSYQ are probably achieved by inhibition of COXs-induced P53/FasL pathway. These findings provide experimental evidence for the beneficial effects of QSYQ in the clinical application for treating patients with HF.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-015-0869-z) contains supplementary material, which is available to authorized users.
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma (PLCγ)-signaling pathway, resulting in ER Ca2+ release. Store-operated Ca2+ entry (SOCE) is the major form of extracellular Ca2+ influx following depletion of ER Ca2+ stores and stromal interaction molecule 1 (STIM1) is a key molecule in the regulation of SOCE. In this study, wild-type and STIM1 knockout mouse embryonic fibroblasts (MEF) cells were used to investigate the role of STIM1 in PDGF-induced Ca2+ oscillation and its functions in MEF cells. The unexpected findings suggest that STIM1 knockout enhances PDGFR–PLCγ–STIM2 signaling, which in turn increases PDGF-BB-induced Ca2+ elevation. Enhanced expressions of PDGFRs and PLCγ in STIM1 knockout cells induce Ca2+ release from the ER store through PLCγ–IP3 signaling. Moreover, STIM2 replaces STIM1 to act as the major ER Ca2+ sensor in activating SOCE. However, activation of PDGFRs also activate Akt, ERK, and JNK to regulate cellular functions, such as cell migration. These results suggest that alternative switchable pathways can be observed in cells, which act downstream of the growth factors that regulate Ca2+ signaling.
Host plants play an important role in the growth, development, and reproduction of insects. However, only a few studies have reported the effects of maize varieties on the growth and reproduction of S. frugiperda. In this study, a free-choice test was used to evaluate the oviposition preferences of female adults on ten common maize varieties and ten special maize varieties. The population fitness of S. frugiperda on six different maize varieties was also examined using the age-stage, two-sex life table method. The results showed that S. frugiperda oviposited and completed its life cycle across all maize cultivars. Moreover, the S. frugiperda females exhibited a significantly higher oviposition preference on the special maize varieties than on the common maize varieties. The highest number of eggs and egg masses occurred on Baitiannuo and the lowest on Zhengdan 958. The egg + larval stage, preadult, pupal stage, adult, APOP, TPOP, and total longevity of S. frugiperda were significantly shorter on the special maize varieties than on the common maize varieties. The fecundity, oviposition days, pupal weight, and hatching rate of S. frugiperda were significantly higher on the special maize varieties than on the common maize varieties. Specifically, S. frugiperda had the highest fecundity, female, and male pupal weight on Baitiannuo. Moreover, the net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) of S. frugiperda were the greatest on Baitiannuo, whereas the shortest mean generation time (T) occurred on Zaocuiwang. The lowest R0, r, and λ, and longest T occurred on Zhengdan 958, suggesting that Zhengdan 958 is a non-preferred host plant compared to the other tested maize varieties. The findings of this study can provide a reference for the rational planting of maize and provide basic scientific information for the management of S. frugiperda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.