Oligosaccharyltransferases (OSTs) mediate the en bloc transfer of N-glycan intermediates onto the asparagine residue in glycosylation sequons (N-X-S/T, X≠P). These enzymes are typically heteromeric complexes composed of several membrane-associated subunits, in which STT3 is highly conserved as a catalytic core. Metazoan organisms encode two STT3 genes (STT3A and STT3B) in their genome, resulting in the formation of at least two distinct OST isoforms consisting of shared subunits and complex specific subunits. The STT3A isoform of OST primarily glycosylates substrate polypeptides cotranslationally, whereas the STT3B isoform is involved in cotranslational and post-translocational glycosylation of sequons that are skipped by the STT3A isoform. Here, we describe mutant constructs of monomeric enhanced green fluorescent protein (mEGFP), which are susceptible to STT3B-dependent N-glycosylation. The endoplasmic reticulum-localized mEGFP (ER-mEGFP) mutants contained an N-glycosylation sequon at their C-terminus and exhibited increased fluorescence in response to N-glycosylation. Isoform-specific glycosylation of the constructs was confirmed by using STT3A- or STT3B-knockout cell lines. Among the mutant constructs that we tested, the ER-mEGFP mutant containing the N -C -T sequon was the best substrate for the STT3B isoform in terms of glycosylation efficiency and fluorescence change. Our results suggest that the mutant ER-mEGFP is useful for monitoring STT3B-dependent post-translocational N-glycosylation in cells of interest, such as those from putative patients with a congenital disorder of glycosylation.
N-glycosylation starts with the biosynthesis of lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER). Alg2 mannosyltransferase adds both the α1,3- and α1,6-mannose (Man) onto ManGlcNAc2-pyrophosphate-dolichol (M1Gn2-PDol) in either order to generate the branched M3Gn2-PDol product. The well-studied yeast Alg2 interacts with ER membrane through four hydrophobic domains. Unexpectedly, we show that Alg2 structure has diverged between yeast and humans. Human Alg2 (hAlg2) associates with the ER via a single membrane-binding domain and is markedly more stable in vitro. These properties were exploited to develop a liquid chromatography-mass spectrometry quantitative kinetics assay for studying purified hAlg2. Under physiological conditions, hAlg2 prefers to transfer α1,3-Man onto M1Gn2 before adding the α1,6-Man. However, this bias is altered by an excess of GDP-Man donor or an increased level of M1Gn2 substrate, both of which trigger production of the M2Gn2(α-1,6)-PDol. These results suggest that Alg2 may regulate the LLO biosynthetic pathway by controlling accumulation of M2Gn2 (α-1,6) intermediate.
The second step of eukaryotic lipid-linked oligosaccharide (LLO) biosynthesis is catalyzed by the conserved ALG13/ALG14 heterodimeric UDP-N-acetylglucosamine transferase (GnTase). In humans, mutations in ALG13 or ALG14 lead to severe neurological disorders with a multisystem phenotype, known as ALG13/14-CDG (congenital disorders of glycosylation). How these mutations relate to disease is unknown because to date, a reliable GnTase assay for studying the ALG13/14 complex is lacking. Here we describe the development of a liquid chromatography/mass spectrometry-based quantitative GnTase assay using chemically synthesized GlcNAc-pyrophosphate-dolichol as the acceptor and purified human ALG13/14 dimeric enzyme. This assay enabled us to demonstrate that in contrast to the literature, only the shorter human ALG13 isoform 2, but not the longer isoform 1 forms a functional complex with ALG14 that participates in LLO synthesis. The longer ALG13 isoform 1 does not form a complex with ALG14 and therefore lacks GnTase activity. Importantly, we further established a quantitative assay for GnTase activities of ALG13- and ALG14-CDG variant alleles, demonstrating that GnTase deficiency is the cause of ALG13/14-CDG phenotypes.
N-glycosylation starts with the biosynthesis of lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum. Alg2 mannosyltransferase adds both the α1,3- and α1,6-Man onto ManGlcNAc2-pyrophosphate-dolichol (M1Gn2-PDol) in either order to generate the branched M3Gn2-PDol product. The well-studied yeast Alg2 interacts with ER membrane through four hydrophobic domains. Unexpectedly, we show that Alg2 structure has diverged significantly between yeast and humans. Human Alg2 (hAlg2) associates with the ER via a single membrane-binding domain and is markedly more stable in vitro. These properties were exploited to develop an LC-MS quantitative kinetic assay for studying purified hAlg2. Under physiological conditions, hAlg2 prefers to transfer α1,3-Man on to M1Gn2 before adding the α1,6-Man. However, this bias is altered by an excess of GDP-Man donor or an increased level of M1Gn2 substrate, both of which trigger production of the M2Gn2 (α-1,6)-PDol. These results suggest that Alg2 may regulate the LLO biosynthetic pathway by controlling accumulation of M2Gn2 (α-1,6) intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.