We study the dark matter (DM) direct detection for the models with the effects of the isospinviolating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator.We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identify any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data. a
We present prospects for discovering dark matter scattering in gravitational wave detectors. The focus of this work is on light, particle dark matter with masses below 1 $$\hbox {GeV}/\text {c}^{2}$$
GeV
/
c
2
. We investigate how a potential signal compares to typical backgrounds like thermal and quantum noise, first in a simple toy model and then using KAGRA as a realistic example. That shows that for a discovery much lighter and cooler mirrors would be needed. We also give some brief comments on space-based experiments and future atomic interferometers.
A modified bleb needling procedure performed in the operating room can successfully lower IOP in the setting of a previous trabeculectomy in over 60% of subjects a year after the procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.