Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the huntingtin (HTT) gene, which leads to progressive loss of neurons starting in the striatum and cortex. One possible mechanism for this selective loss of neurons in the early stage of HD is altered neurotransmission at synapses. Despite the recent finding that presynaptic terminals play an important role in HD, neurotransmitter release at synapses in HD remains poorly understood. Here, we measured synaptic vesicle release in real time at single presynaptic terminals during electrical field stimulation. We found the increase in synaptic vesicle release at presynaptic terminals in primary cortical neurons in a knock-in mouse model of HD (zQ175). We also found the increase in Ca2+ influx at presynaptic terminals in HD neurons during the electrical stimulation. Consistent with increased Ca2+-dependent neurotransmission in HD neurons, the increase in vesicle release and Ca2+ influx was rescued with Ca2+ chelators or by blocking N-type voltage-gated Ca2+ channels, suggesting N-type voltage-gated Ca2+ channels play an important role in HD. Taken together, our results suggest that the increased synaptic vesicles release due to increased Ca2+ influx at presynaptic terminals in cortical neurons contributes to the selective neurodegeneration of these neurons in early HD and provide a possible therapeutic target.
Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by an increase in CAG repeats in the Huntingtin gene (HTT). The striatum is one of the most vulnerable brain regions in HD, and altered delivery of BDNF to the striatum is believed to underlie this high vulnerability. However, the delivery of BDNF to the striatum in HD remains poorly understood. Here, we used real-time imaging to visualize release of BDNF from cortical neurons cultured alone or co-cultured with striatal neurons. BDNF release was significantly decreased in the cortical neurons of zQ175 mice (a knock-in model of HD), and total internal reflection fluorescence microscopy revealed several release patterns of single BDNF-containing vesicles, with distinct kinetics and prevalence, in co-cultured cortical HD neurons. Notably, a smaller proportion of single BDNF-containing vesicles underwent full release in HD neurons than in wild-type neurons. This decreased release of BDNF in cortical neurons might lead to decreased BDNF levels in the striatum because the striatum receives BDNF mainly from the cortex. In addition, we observed a decrease in the total travel length and speed of BDNF-containing vesicles in HD neurons, indicating altered transport of these vesicles in HD. Our findings suggest a potential mechanism for the vulnerability of striatal neurons in HD and offer new insights into the pathogenic mechanisms underlying the degeneration of neurons in HD.
Although defective synaptic transmission was suggested to play a role in neurodegenerative diseases, the dynamics and vesicle pools of synaptic vesicles during neurodegeneration remain elusive. Here, we performed real-time three-dimensional tracking of single synaptic vesicles in cortical neurons from a mouse model of Huntington's disease (HD). Vesicles in HD neurons had a larger net displacement and radius of gyration compared with wild-type neurons. Vesicles with high release probability (P r ) were interspersed with low-P r vesicles in HD neurons, whereas high-P r vesicles were closer to fusion sites than low-P r in wild-type neurons. Non-releasing vesicles in HD neurons had an abnormally high prevalence of irregular oscillatory motion. These abnormal dynamics and vesicle pools were rescued by overexpressing Rab11, and the abnormal irregular oscillatory motion was rescued by jasplakinolide. Our studies reveal the abnormal dynamics and pools of synaptic vesicles in the early stages of HD, suggesting a possible pathogenic mechanism of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.