We have systematically explored how plasmonic effects influence the characteristics of polymer photovoltaic devices (OPVs) incorporating a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We blended gold nanoparticles (Au NPs) into the anodic buffer layer to trigger localized surface plasmon resonance (LSPR), which enhanced the performance of the OPVs without dramatically sacrificing their electrical properties. Steady state photoluminescence (PL) measurements revealed a significant increase in fluorescence intensity, which we attribute to the increased light absorption in P3HT induced by the LSPR. As a result, the rate of generation of excitons was enhanced significantly. Furthermore, dynamic PL measurements revealed that the LSPR notably reduced the lifetime of photogenerated excitons in the active blend, suggesting that interplay between the surface plasmons and excitons facilitated the charge transfer process. This phenomenon reduced the recombination level of geminate excitons and, thereby, increased the probability of exciton dissociation. Accordingly, both the photocurrents and fill factors of the OPV devices were enhanced significantly. The primary origin of this improved performance was local enhancement of the electromagnetic field surrounding the Au NPs. The power conversion efficiency of the OPV device incorporating the Au NPs improved to 4.24% from a value of 3.57% for the device fabricated without Au NPs.
We have developed a general synthetic route to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70 nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, we demonstrate that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres.
A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk-shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu(2)O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu(2)O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk-shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation. Different activation energies for cyclohexene hydrogenation were obtained for nanostructures with and without the cavity in between the core and the shell. This demonstrates the importance of controlling the cavity because of its influence on the catalysis.
We report a seed-mediated synthesis method for the preparation of gold nanocrystals with systematic shape evolution from truncated cubic to cubic, trisoctahedral, and rhombic dodecahedral structures in aqueous solution for the first time. Nanocrystals with transitional morphologies were also synthesized. The combination of using cetyltrimethylammonium chloride (CTAC) surfactant and a very small amount of NaBr to control the bromide concentration in the growth solution was found to be critical to the formation of nanocubes. Variation in the volume of ascorbic acid added to the growth solution enabled the fine control of nanocrystal morphology. Nanocubes and rhombic dodecahedra with controlled sizes of 30-75 nm were prepared by adjusting the volume of the seed solution added to the growth solution. They can self-assemble into ordered packing structures on substrates because of their uniform sizes. XRD, TEM, and UV-vis absorption characterization of the different products synthesized have been performed. By increasing the bromide concentration 5-fold that used to make the nanocubes, unusual right bipyramids of gold bounded by six {100} faces were produced. The high product purity and excellent size control of this facile synthetic approach should make these novel gold nanostructures be readily available for a wide range of studies.
Formation of metal-semiconductor core-shell heterostructures with precise morphological control of both components remains challenging. Heterojunctions, rather than core-shell structures, were typically produced for metal-semiconductor composites. Furthermore, growth of semiconductor shells with systematic shape evolution using the same metal particle cores can also present a significant challenge. Here, we have synthesized Au-Cu(2)O core-shell heterostructures using gold nanoplates, nanorods, octahedra, and highly faceted nanoparticles as the structure-directing cores for the overgrowth of Cu(2)O shells by a facile aqueous solution approach. The gold nanoparticle cores guide the growth of Cu(2)O shells with morphological and orientation control. Systematic shape evolution of the shells can be easily achieved by simply adjusting the volume of reductant added. For example, truncated cubic to octahedral Cu(2)O shells were produced from octahedral gold nanocrystal cores. Unusual truncated stellated icosahedral and star column structures have also been synthesized. The heterostructures were found to be formed via an unusual hollow-shell-refilled growth mechanism not reported before. The approach has potential toward the preparation of other complex Cu(2)O structures with well-defined facets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.