Snail is primarily known as a transcriptional repressor that induces epithelial-mesenchymal transition by suppressing adherent proteins. Emerging evidence suggests that Snail can act as an activator; however, the mechanism and biological significance are unclear. Here, we found that CREB-binding protein (CBP) is the critical factor in Snail-mediated target gene transactivation. CBP interacts with Snail and acetylates Snail at lysine 146 and lysine 187, which prevents the repressor complex formation. We further identified several Snail-activated targets, including TNF-α, which is also the upstream signal for Snail acetylation, and CCL2 and CCL5, which promote the recruitment of tumor-associated macrophages. Here, we present our results on the mechanism by which Snail induces target gene transactivation to remodel the tumor microenvironment.
Chromosomal instability (CIN) is widely considered a hallmark of cancer, but its precise roles in cancer stem cells (CSC) and malignant progression remain uncertain. BMI1 is a member of the Polycomb group of chromatinmodifier proteins that is essential for stem cell self-renewal. In human cancers, BMI1 overexpression drives stemlike properties associated with induction of epithelial-mesenchymal transition (EMT) that promotes invasion, metastasis, and poor prognosis. Here, we report that BMI1 mediates its diverse effects through upregulation of the mitotic kinase Aurora A, which is encoded by the AURKA gene. Two mechanisms were found to be responsible for BMI1-induced AURKA expression. First, BMI1 activated the Akt pathway, thereby upregulating AURKA expression through activation of the b-catenin/TCF4 transcription factor complex. Second, BMI1 repressed miRNA let-7i through a Polycomb complex-dependent mechanism, thereby relieving AURKA expression from let7i suppression. AURKA upregulation by BMI1 exerts several effects, including centrosomal amplification and aneuploidy, antiapoptosis, and cell-cycle progression through p53 degradation and EMT through stabilization of Snail. Inhibiting Aurora A kinase activity attenuated BMI1-induced tumor growth in vivo. In clinical specimens of head and neck cancer, we found that coamplification of BMI1 and AURKA correlated with poorer prognosis. Together, our results link CSCs, EMT, and CIN through the BMI1-AURKA axis and suggest therapeutic use from inhibiting Aurora A in head and neck cancers, which overexpress BMI1. Cancer Res; 73(2); 953-66. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.