The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimer's disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo.
IntroductionZinc finger-like protein that regulates apoptosis (Zfra) is a naturally occurring 31-amino-acid protein. Synthetic peptides Zfra1–31 and Zfra4–10 are known to effectively block the growth of many types of cancer cells.MethodsTen-month-old triple-transgenic (3×Tg) mice for Alzheimer's disease (AD) received synthetic Zfra peptides via tail vein injections, followed by examining restoration of memory deficits.ResultsZfra significantly downregulated TRAPPC6AΔ, SH3GLB2, tau, and amyloid β (Αβ) aggregates in the brains of 3×Tg mice and effectively restored their memory capabilities. Zfra inhibited melanoma-induced neuronal death in the hippocampus and plaque formation in the cortex. Mechanistically, Zfra blocked the aggregation of amyloid β 42 and many serine-containing peptides in vitro, suppressed tumor necrosis factor–mediated NF-κB activation, and bound cytosolic proteins for accelerating their degradation in ubiquitin/proteasome-independent manner.DiscussionZfra peptides exhibit a strong efficacy in blocking tau aggregation and amyloid Αβ formation and restore memory deficits in 3×Tg mice, suggesting its potential for treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.