In the past decades, many optimization methods have been devised and applied to job shop scheduling problem (JSSP) to find the optimal solution. Many methods assumed that the scheduling results were applied to static environments, but the whole environments in the real world are always dynamic. Moreover, many unexpected events such as machine breakdowns and material problems may be present to adversely affect the initial job scheduling. This work views JSSP as a sequential decision making problem and proposes to use deep reinforcement learning to cope with this problem. The combination of deep learning and reinforcement learning avoids handcraft features as used in traditional reinforcement learning, and it is expected that the combination will make the whole learning phase more efficient. Our proposed model comprises actor network and critic network, both including convolution layers and fully connected layer. Actor network agent learns how to behave in different situations, while critic network helps agent evaluate the value of statement then return to actor network. This work proposes a parallel training method, combining asynchronous update as well as deep deterministic policy gradient (DDPG), to train the model. The whole network is trained with parallel training on a multi-agent environment and different simple dispatching rules are considered as actions. We evaluate our proposed model on more than ten instances that are present in a famous benchmark problem library-OR library. The evaluation results indicate that our method is comparative in static JSSP benchmark problems, and achieves a good balance between makespan and execution time in dynamic environments. Scheduling score of our method is 91.12% in static JSSP benchmark problems, and 80.78% in dynamic environments. INDEX TERMS Job shop scheduling problem (JSSP), deep reinforcement learning, actor-critic network, parallel training.
Predicting the wafer material removal rate (MRR) is an important step in semiconductor manufacturing for total quality control. This work proposes a deep learning model called a fusion network to predict the MRR, in which we consider separating features into shallow and deep features and use the characteristics of deep learning to perform a fusion of these two kinds of features. In the proposed model, the deep features go through a sequence of nonlinear transformations and the goal is to learn the complex interactions among the features to obtain the deep feature embeddings. Additionally, the proposed method is flexible and can incorporate domain knowledge into the model by encoding the knowledge as shallow features. Once the learning of deep features is completed, the proposed model uses the shallow features and the learned deep feature embeddings to obtain new features for the subsequent layers. This work performs experiments on a dataset from the 2016 Prognostics and Health Management Data Challenge. The experimental results show that the proposed model outperforms the competition winner and three ensemble learning methods. The proposed method is a single model, whereas the comparison methods are ensemble models. Besides the experimental results, we conduct extensive experiments to analyze the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.