The conflicts exist between the phylogeny of Campanulaceae based on nuclear ITS sequence and plastid markers, particularly in the subdivision of Cyanantheae (Campanulaceae). Besides, various and complicated plastid genome structures can be found in species of the Campanulaceae. However, limited availability of genomic information largely hinders the studies of molecular evolution and phylogeny of Campanulaceae. We reported the complete plastid genomes of three Cyanantheae species, compared them to eight published Campanulaceae plastomes, and shed light on a deeper understanding of the applicability of plastomes. We found that there were obvious differences among gene order, GC content, gene compositions and IR junctions of LSC/IRa. Almost all protein-coding genes and amino acid sequences showed obvious codon preferences. We identified 14 genes with highly positively selected sites and branch-site model displayed 96 sites under potentially positive selection on the three lineages of phylogenetic tree. Phylogenetic analyses showed that Cyananthus was more closely related to Codonopsis compared with Cyclocodon and also clearly illustrated the relationship among the Cyanantheae species. We also found six coding regions having high nucleotide divergence value. Hotpot regions were considered to be useful molecular markers for resolving phylogenetic relationships and species authentication of Campanulaceae.
Lobelia species, as rich source of the alkaloid lobeline which has been shown to have important biological activity, have been used in folk medicine throughout East Asia to treat various diseases. However, Lobelia is a complex and varied genus in East Asia and is thus difficult to identify. Genomic resources would aid identification, however the availability of such information is poor, preventing a clear understanding of their evolutionary history from being established. To close this gap in the available genomic data, in this study, 17 plastomes of East Asian lobelias were newly sequenced and assembled. Although the plastomes of Lobelia sect. Hypsela, L. sect. Speirema, and L. sect. Rhynchopetalum shared the gene structure, the inverted repeat (IR)/large single copy (LSC) boundaries, genome size, and the number of repeats were variable, indicating the non-conservative nature of plastome evolution within these sections. However, the genomes of the Lobelia sect. Delostemon and L. sect. Stenotium showed rearrangements, revealing that these two sections might have undergone different evolutionary histories. We assessed nine hotspot genes and 27-51 simple sequence repeat motifs, which will also serve as valuable DNA barcode regions in future population genetics studies and for the delineation of plant species. Our phylogenetic analysis resolved the evolutionary positions of the five sections in agreement with previous evolutionary trees based on morphological features. Although phylogenetic reconstruction of Lobelioideae based on the rpoC2 gene has rarely been performed, our results indicated that it contains a considerable amount of phylogenetic information and offers great promise for further phylogenetic analysis of Lobelioideae. Our site-specific model identified 173 sites under highly positive selections. The branch-site model exhibited 11 positive selection sites involving four genes in the East Asian branches. These four genes may play critical roles in the adaptation of East Asian taxa to diverse environments. Our study is the first to detect plastome organization, phylogenetic utility, and signatures of positive selection in the plastomes of East Asian lobelias, which will help to further advance taxonomic and evolutionary studies and the utilization of medicinal plant resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.