We report the de novo asymmetric synthesis of the 3,6-dideoxy sugars abequose, paratose, and tyvelose from 2acetylfuran. Conversion of this readily available ketone to a pyranone derivative was followed by transformation to either an αor βglycoside via diasteroselective acylation. Michael addition at C2 controlled primarily by the C1 configuration in the glycoside produced 3,6-dideoxy-4-keto sugars, which could be reduced and converted to either fully deprotected monosaccharides or to immediate precursors of glycosyl donors.
Although surface plasmon (SP) coupling has been widely used for enhancing the emission efficiency of an InGaN/GaN quantum well (QW) structure, the interplay of the carrier transport behavior in the QW with SP coupling, which is a crucial mechanism controlling the SP-coupling induced QW emission enhancement, is still an issue not well explored yet. To understand the effects of SP coupling on the radiative and non-radiative recombination behaviors of carriers in a QW structure, the temperature-dependent time-resolved photoluminescence spectroscopies of two QW samples of different indium contents with surface Ag nanoparticles are studied. A two-single-exponential model is used for calibrating their radiative and non-radiative decay times. The SP coupling process, which transfers carrier energy from a QW into the SP resonance mode for effective radiation and increases the effective radiative recombination rate, produces energy-dependent carrier depletion and, hence, disturbs the quasi-equilibrium condition of carrier distribution. In this situation, a strong carrier transport process occurs targeting a new quasi-equilibrium condition that enhances non-radiative recombination and, hence, reduces the benefit of using the SP coupling technique. To alleviate this problem of SP-coupling induced energy loss, a weak energy-dependent or broad-spectrum SP coupling process is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.