Piezoelectric nanofiber composites of polyvinylidene fluoride (PVDF) polymer and PZT (Pb(Zr 0.53 Ti 0.47 )O 3 ) ceramics were fabricated by electrospinning. The microstructure of the PZT/PVDF electrospun nanofiber composites was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile properties (stressstrain curves) and electrical properties (P-E hysteresis loops) of the PZT/PVDF electrospun nanofiber composites were investigated as a function of PZT content from 0 wt% to 30 wt%. The results demonstrated that a PZT content of 20 wt % had enhanced tensile and piezoelectric characteristics.
Currently, piezoelectric ceramics are being applied in various fields, such as ultrasonic sensors, vibration devices, sound filters, and various energy conversion devices. Flexible piezoelectric ceramics are widely studied in an effort to mitigate the disadvantages of their brittle and inductile properties. Structural damage to piezoelectric fibers is much less than that to thin films when piezoelectric fibers are twisted or bent. Therefore, stretchable devices can be fabricated if piezoelectric fibers are obtained using an elongated substrate. In this study, sintering processes of PZT (Pb(Zr 0.53 Ti 0.47 )O 3 ) fibers prepared by electrospinning were optimized through the TGA and XRD analyses. The crystal structure and microstructure of the piezoelectric fibers were investigated by XRD, FE-SEM and TEM.
PZT(Pb(Zr 0.53 Ti 0.47)O 3)/PVDF(poly vinylidene fluoride) nanofibers were prepared based on DMF (dimethylformamide) and acetone solvent by electrospinning. The optimum concentration of a PZT and PVDF composite solution for the formation of nanofibers was found by SEM (scanning electron microscopy) observations. XRD (X-ray diffraction) measurements indicated that the characteristics of PZT and PVDF coexisted. The effects of the PZT concentration on the tensile strength were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.