Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection.
BACKGROUND AND PURPOSEThis study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action.
EXPERIMENTAL APPROACHUsing HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication.
KEY RESULTSIn HCV replicon and HCVcc infectious systems, andrographolide time-and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity.
CONCLUSIONS AND IMPLICATIONSOur results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development.
Celastrol represents a potential anti-DENV agent that induces IFN-α expression and stimulates a downstream antiviral response, making the therapy a promising drug or dietary supplement for the treatment of DENV-infected patients.
Celastrol can serve as a potential supplement for blocking HCV replication. Targeting the JNK/Nrf2/HO-1 axis presents a promising strategy against HCV infection.
BackgroundZika virus (ZIKV) infection causes diseases ranging from acute self-limiting febrile illness to life-threatening Guillain–Barré Syndrome and other neurological disorders in adults. Cumulative evidence suggests an association between ZIKV infection and microcephaly in newborn infants. Given the host-range restrictions of the virus, a susceptible animal model infected by ZIKV must be developed for evaluation of vaccines and antivirals. In this study, we propose a convenient mouse model for analysis of neurological disorders caused by ZIKV.MethodologySix-day-old immunocompetent ICR suckling mice were used in the experiment. Different inoculum virus concentrations, challenge routes, and challenge times were assessed. Viremic dissemination was determined in the liver, spleen, kidney, and brain through Western blot assay, plaque assay, absolute quantification real-time PCR, and histological observation. Azithromycin, a well-characterized anti-ZIKV compound, was used to evaluate the ICR suckling mouse model for antiviral testing.ConclusionsSigns of illness and neurological disease and high mortality rate were observed in mice injected with ZIKV intracerebrally (102 to 105) and intraperitoneally (103 to 105). Viremic dissemination was observed in the liver, spleen, kidney, and brain. ZIKV transmitted, rapid replicated, and induced monocyte infiltration into the brain approximately 5 to 6 days post inoculum. Azithromycin conferred protection against ZIKV-caused neurological and life-threatening diseases. The developed model of ZIKV infection and disease can be used for screening drugs against ZIKV and discovering the underlying mechanism of ZIKV pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.