Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.
We describe the synthesis of pH-responsive miktoarm star block terpolymers mu-[polystyrene][poly(ethylene oxide)][poly(2-(dimethylamino)ethyl acrylate)] (mu-SODA) using a combination of two successive living anionic polymerizations and one reversible addition-fragmentation chain-transfer polymerization. Poly[2-(dimethylamino)ethyl acrylate] (PDMAEA) is a weak polybase that is hydrophilic at low pH and hydrophobic at high pH because of the protonation of the dimethylamino functional group with decreasing pH. In addition, our results suggest that PDMAEA is immiscible with polystyrene (PS), a feature that is desirable for the formation of multicompartment micelles. Using a combination of dynamic light scattering and cryogenic transmission electron microscopy, we demonstrate that mu-SODA micelles formed in water evolve from mixed corona (PEO + PDMAEA corona; PS core) and predominantly spherical micelles to multicompartment (PEO corona; PS + PDMAEA core) micelles with increasing pH.
Objective Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK). In the present study, we investigated whether NNK treatment alone induces both preneoplastic and neoplastic lesions in the lungs of ferrets. Methods We exposed ferrets to NNK by i.p. injection of NNK (50 mg/kg BW) once a month for four consecutive months and then followed up for 24, 26 and 32 weeks. The incidences of pulmonary preneoplastic and neoplastic lesions were assessed by histopathological examination. The expressions of α7 nicotinic acetylcholine receptor (α7 nAChR, which has been shown to promote lung carcinogenesis) and its related molecular biomarkers in lungs were examined by immunohistochemistry and/or Western blotting analysis. Results Ferrets exposed to NNK alone developed both preneoplastic lesions (squamous metaplasia, dysplasia and atypical adenomatous hyperplasia) and tumors (squamous cell carcinoma, adenocarcinoma and adenosquamous carcinoma), which are commonly seen in humans. The incidence of tumor induced by NNK was time-dependent in the ferrets (16.7%, 40.0% and 66.7% for 24, 26 and 32 weeks, respectively). α7 nAChR is highly expressed in the ferret bronchial/bronchiolar epithelial cells, and alveolar macrophages in ferrets exposed to NNK, and in both squamous cell carcinoma and adenocarcinoma of the ferrets. In addition, we observed the tendency for an increase in phospho-ERK and cyclin D1 protein levels (p = 0.081 and 0.080, respectively) in the lungs of ferrets exposed to NNK. Conclusion The development of both preneoplastic and neoplastic lesions in ferret lungs by injecting NNK alone provides a simple and highly relevant non-rodent model for studying biomarkers/molecular targets for the prevention, detection and treatment of lung carcinogenesis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.