Summary Within the gastrointestinal stem cell niche, nerves help to regulate both normal and neoplastic stem cell dynamics. Here, we reveal the mechanisms underlying the cancer-nerve partnership. We find that Dclk1+ tuft cells and nerves are the main sources of acetylcholine (ACh) within the gastric mucosa. Cholinergic stimulation of the gastric epithelium induced nerve growth factor (NGF) expression, and in turn NGF overexpression within gastric epithelium expanded enteric nerves and promoted carcinogenesis. Ablation of Dclk1+ cells or blockade of NGF/Trk signaling inhibited epithelial proliferation and tumorigenesis in a muscarinic acetylcholine receptor-3 (M3R)-dependent manner, in part through suppression of Yes-Associated Protein (YAP) function. This feed-forward ACh-NGF axis activates the gastric cancer niche and offers a compelling target for tumor treatment and prevention.
A recent study reported that a special weekly scheduled time-restricted feeding regimen (TRF), i.e., no food consumption for 15h during the light (inactive) phase per day for 5 weekdays, attenuated the outcome of diverse nutritional challenges in response to high-fat diet in mice. In the present study, we wanted to further test whether this TRF could restrict body weight gain in both juvenile and adult animals when fed a high-fat diet. Fifty male Sprague-Dawley rats at ages from 5 to 27weeks were used. First, we found that freely fed rats with 60% fat diet gained weight significantly, which was associated with more calorie intake (particularly during light phase) than those fed standard food (7% fat). Secondly, we found that TRF restricted high-fat diet-induced weight gain in both groups of juvenile rats (5 and 13weeks of age) compared to freely fed rats with high-fat diet, despite the same levels of 24h-calorie intake during either weekdays or the weekend. Thirdly, we found that TRF did not restrict high-fat diet-induce weight gain in adult rats (27weeks of age). Thus, we suggest that this special TRF regimen could be further tested in humans (particularly young adults) for the purpose of obesity prevention.
Trefoil factor family 2 (TFF2), also known as spasmolytic polypeptide, is a member of the trefoil family of peptides and is expressed primarily in the mucous neck cells of the gastric mucosa. To study the physiologic role of TFF2, we have generated TFF2-deficient mice through targeted gene disruption. Homozygous mutant mice were viable and fertile without obvious gastrointestinal abnormalities. However, quantitative measurements revealed a significant decrease in gastric mucosal thickness and in gastric mucosal proliferation rates. In addition, there was a twofold increase in activated parietal cells resulting in a twofold increase in basal and stimulated gastric acid output and an undetectable serum gastrin level. The TFF2-deficient mice also showed a significant increase in the degree of gastric ulceration after administration of indomethacin. Taken together, these results suggest a physiologic role for TFF2 to promote mucosal healing through the stimulation of proliferation and downregulation of gastric acid secretion.
Background & Aims Enterochromaffin-like (ECL) cells in the stomach express gastrin/cholecystokinin 2 receptor CCK2R and are known to expand under hypergastrinemia, but whether this results from expansion of existing ECL cells or increased production from progenitors has not been clarified. Methods We used mice with green fluorescent protein fluorescent reporter expression in ECL cells (histidine decarboxylase [Hdc]-green fluorescent protein), as well as Cck2r - and Hdc-driven Tamoxifen inducible recombinase Cre (Cck2r-CreERT2, Hdc-CreERT2) mice combined with Rosa26Sor-tdTomato (R26-tdTomato) mice, and studied their expression and cell fate in the gastric corpus by using models of hypergastrinemia (gastrin infusion, omeprazole treatment). Results Hdc-GFP marked the majority of ECL cells, located in the lower third of the gastric glands. Hypergastrinemia led to expansion of ECL cells that was not restricted to the gland base, and promoted cellular proliferation (Ki67) in the gastric isthmus but not in basal ECL cells. Cck2r -CreERT2 mice marked most ECL cells, as well as scattered cell types located higher up in the glands, whose number was increased during hypergastrinemia. Cck2r -CreERT2 + isthmus progenitors, but not Hdc + mature ECL cells, were the source of ECL cell hyperplasia during hypergastrinemia and could grow as 3-dimensional spheroids in vitro. Moreover, gastrin treatment in vitro promoted sphere formation from sorted Cck2r + Hdc - cells, and increased chromogranin A and phosphorylated- extracellular signal-regulated kinase expression in CCK2R-derived organoids. Gastrin activates extracellular signal-regulated kinase pathways in vivo and in vitro, and treatment with the Mitogen-activated protein kinase kinase 1 inhibitor U0126 blocked hypergastrinemia-mediated changes, including CCK2R-derived ECL cell hyperplasia in vivo as well as sphere formation and chromogranin A expression in vitro. Conclusions We show here that hypergastrinemia induces ECL cell hyperplasia that is derived primarily from CCK2R + progenitors in the corpus. Gastrin-dependent function of CCK2R + progenitors is regulated by the extracellular signal-regulated kinase pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.