African swine fever virus (ASFV) causes a highly lethal hemorrhagic viral disease (ASF) of pigs that results in serious losses in China and elsewhere. The development of a vaccine and diagnosis technology for ASFV is essential to prevent and control the spread of ASF. The p72 protein of ASFV is highly immunogenic and reactive, and is a dominant antigen in ASF vaccine and diagnostic research. In this study, 17 p72 monoclonal antibodies (mAbs) were generated. Epitope mapping by a series of overlapping peptides expressed in Escherichia coli showed that these mAbs recognized a total of seven (1–7) linear B cell epitopes. These mAbs did not show significant neutralizing activity. Epitopes 1 (249HKPHQSKPIL258), 2 (69PVGFEYENKV77), 5 (195VNGNSLDEYSS205), and 7 (223GYKHLVGQEV233) are novel. Sequence alignment analysis revealed that the identified epitopes were highly conserved among 27 ASFV strains from nine genotypes. Preliminary screening using known positive and negative sera indicated the diagnostic potential of mAb-2B8D7. The results provide new insights into the antigenic regions of ASFV p72 and will inform the diagnosis of ASFV.
African swine fever virus (ASFV) is a highly infectious and lethal double-stranded DNA virus that is responsible for African swine fever (ASF). ASFV was first reported in Kenya in 1921. Subsequently, ASFV has spread to countries in Western Europe, Latin America, and Eastern Europe, as well as to China in 2018. ASFV epidemics have caused serious pig industry losses around the world. Since the 1960s, much effort has been devoted to the development of an effective ASF vaccine, including the production of inactivated vaccines, attenuated live vaccines, and subunit vaccines. Progress has been made, but unfortunately, no ASF vaccine has prevented epidemic spread of the virus in pig farms. The complex ASFV structure, comprising a variety of structural and non-structural proteins, has made the development of ASF vaccines difficult. Therefore, it is necessary to fully explore the structure and function of ASFV proteins in order to develop an effective ASF vaccine. In this review, we summarize what is known about the structure and function of ASFV proteins, including the most recently published findings.
Background African swine fever (ASF) is a highly fatal disease in domestic pigs caused by ASF virus (ASFV), for which there is currently no commercial vaccine available. The genome of ASFV encodes more than 150 proteins, some of which have been included in subunit vaccines but only induce limited protection against ASFV challenge. Methods To enhance immune responses induced by ASFV proteins, we expressed and purified three fusion proteins with each consisting of bacterial lipoprotein OprI, 2 different ASFV proteins/epitopes and a universal CD4+ T cell epitope, namely OprI-p30-modified p54-TT, OprI-p72 epitopes-truncated pE248R-TT, and OprI-truncated CD2v-truncated pEP153R-TT. The immunostimulatory activity of these recombinant proteins was first assessed on dendritic cells. Then, humoral and cellular immunity induced by these three OprI-fused proteins cocktail formulated with ISA206 adjuvant (O-Ags-T formulation) were assessed in pigs. Results The OprI-fused proteins activated dendritic cells with elevated secretion of proinflammatory cytokines. Furthermore, the O-Ags-T formulation elicited a high level of antigen-specific IgG responses and interferon-γ-secreting CD4+ and CD8+ T cells after stimulation in vitro. Importantly, the sera and peripheral blood mononuclear cells from pigs vaccinated with the O-Ags-T formulation respectively reduced ASFV infection in vitro by 82.8% and 92.6%. Conclusions Our results suggest that the OprI-fused proteins cocktail formulated with ISA206 adjuvant induces robust ASFV-specific humoral and cellular immune responses in pigs. Our study provides valuable information for the further development of subunit vaccines against ASF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.