We investigate the Hf/GdFeCo bilayer with the MgO cap layer for both rare earth (RE)-rich and transition metal (TM)-rich configurations of the ferrimagnetic sublattice in the presence of the perpendicular field. We study the coercivity using the anomalous Hall effect (AHE) technique by multiple measurements on the same sample. In the first set of measurements and at low electric currents, coercivity sharply drops because of the oxygen diffusion at the interface between MgO and GdFeCo when the AHE probe current is applied. During the subsequent measurements on the RE-rich sample, we observe a moderate decrease in coercivity at low currents and the coercivity increases in a high current range. Such nonlinear dependence of coercivity on electric current can be explained by the competing interplay of the spin–orbit torque (SOT) and the Joule heating effects. On the other hand, for the TM-rich case, the SOT effect is observed over a widely applied current range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.