BackgroundContrast-enhanced MRI can be used to identify patients with hepatocellular carcinoma (HCC). However, studies around the world have found differing diagnostic accuracies for the technique. Hence, we designed this meta-analysis to assess the accuracy of contrast-enhanced MRI for HCC diagnosis.MethodsWe conducted a systematic search for all studies reporting the diagnostic accuracy of contrast-enhanced MRI for HCC in the databases of MEDLINE, EMBASE, Cochrane Library, Web of Science, SCOPUS, ScienceDirect, and Google Scholar from inception until January 2021. We used the “Midas” package from the STATA software to perform the meta-analysis.ResultsOur study was based on 21 publications with 5,361 patients. The pooled HCC diagnosis sensitivity and specificity were 75% (95% CI, 70%–80%) and 90% (95% CI, 88%–92%), respectively, for gadoxetic acid-enhanced MRI; and they were 70% (95% CI, 57%–81%) and 94% (95% CI, 85%–97%), respectively, for MRI with extracellular contrast agents (ECA-MRI). We found significant heterogeneity with a significant chi-square test and an I2 statistic >75%. We also found significant publication bias as per Deeks’ test results and funnel plot.ConclusionWe found that both types of contrast-enhanced MRI are accurate diagnostic and surveillance tools for HCC and offer high sensitivity and specificity. Further studies on different ethnic populations are required to strengthen our findings.
Introduction: The side effects of conventional therapy for acute deep vein thrombosis (DVT) are severe, with inflammatory reactions playing a pivotal role. It is particularly important to explore new ways of treatment thrombosis by targeting inflammatory factors.Methods: A targeted microbubble contrast agent was prepared using the biotin-avidin method. The 40 DVT model rabbits were established and divided into four groups according to different treatment regimens. The four coagulation indexes, TNF-α, and D-dimer content of experimental animals were measured before modeling and before and after treatment, and the thrombolysis was assessed by ultrasound imaging. Finally, the results were verified by pathology.Results and Discussion: Fluorescence microscopy verified the successful preparation of targeted microbubbles. Among the groups, PT, APTT, and TT in Group II-IV were longer than those in Group I (all p < 0.05). FIB and D-dimer content were lower than those in Group I (all p < 0.05), and TNF-α content in Group IV was lower than that in Group I-III (all p < 0.05). Pairwise comparison before modeling and before treatment and after treatment showed that, after treatment, the PT, APTT, and TT in Group II-IV were longer than those before modeling (all p < 0.05). The contents of FIB and D-dimer were lower than those before modeling and before treatment (all p < 0.05). The content of TNF-α decreased significantly only in Group IV, but increased in the other three groups. Targeted microbubbles combined with Low-power focused ultrasound can reduce inflammation, significantly promote thrombolysis, and provide new ideas and methods for the diagnosis and treatment of acute DVT.
Objective To assess the potential of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) in monitoring renal changes in a diabetic nephropathy (DN) rat model with acute kidney injury (CI-AKI) induced by iso-osmotic contrast media (IOCM) and low-osmotic contrast media (LOCM). Methods A diabetic nephropathy rat model was established, and the animals were randomly split into the LOCM group and IOCM group (n = 13 per group), with iopamidol and iodixanol injection, respectively (4 g iodine/kg). MRI including IVIM and DKI was performed 24 h before contrast medium injections (baseline) and 1, 24, 48, and 72 h after injections. Changes in pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), mean diffusion (MD), mean kurtosis (MK), serum creatinine (SCr) and urea nitrogen (BUN), histopathology alterations, and α-smooth muscle actin (α-SMA) expression were assessed. Inter-observer agreement was evaluated using the intraclass correlation coefficient (ICC). Results Compared against baseline levels, significant decreases in D, D*, and f were observed in all anatomical kidney compartments after contrast injection (p < 0.05). MD in the cortex (CO) and outer medullary (OM) gradually decreased, and MK in OM gradually increased 24–72 h after injection. D, D*, f, and MD were negatively correlated with the histopathologic findings and α-smooth muscle actin (α-SMA) expression in all anatomical kidney compartments. Inter-observer reproducibility was generally good (ICCs ranging from 0.776 to 0.979). Conclusions IVIM and DKI provided noninvasive imaging parameters, which might offer effective detection of CI-AKI in DN.
Course evaluation is an important and necessary means to improve the level of course. A new course evaluation method based on fractional grey relational distance and analytic hierarchy process (AHP) is proposed in this paper. Firstly, the proportion of the different influence factors can be determined through constructing judging-matrix and calculating-back-to-one and dealing with the checkout of coherence. Secondly, qualitative evaluation indicators are quantified by fractional-order system, and quantitative indicators are processed by idealization and normalization. And then association coefficient is defined. Finally, correlation distance degree is proposed. The new similarity degree reflects the relatedness and the different shape among a selected scheme, the ideal solution and negative ideal solution. Through the application to actual course assessment instance, the results show its practicability and effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.