In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Silver nanoparticles (nano-Ag) are potent and broad-spectrum antimicrobial agents. In this study, spherical nano-Ag (average diameter = 9.3 nm) particles were synthesized using a borohydride reduction method and the mode of their antibacterial action against E. coli was investigated by proteomic approaches (2-DE and MS identification), conducted in parallel to analyses involving solutions of Ag(+) ions. The proteomic data revealed that a short exposure of E. coli cells to antibacterial concentrations of nano-Ag resulted in an accumulation of envelope protein precursors, indicative of the dissipation of proton motive force. Consistent with these proteomic findings, nano-Ag were shown to destabilize the outer membrane, collapse the plasma membrane potential and deplete the levels of intracellular ATP. The mode of action of nano-Ag was also found to be similar to that of Ag(+) ions (e.g., Dibrov, P. et al, Antimicrob. Agents Chemother. 2002, 46, 2668-2670); however, the effective concentrations of nano-Ag and Ag(+) ions were at nanomolar and micromolar levels, respectively. Nano-Ag appear to be an efficient physicochemical system conferring antimicrobial silver activities.
Gold complexes have recently gained increasing attention in the design of new metal-based anticancer therapeutics. Gold(III) complexes are generally reactive/unstable under physiological conditions via intracellular redox reactions, and the intracellular Au(III) to Au(I) reduction reaction has recently been "traced" by the introduction of appropriate fluorescent ligands. Similar to most Au(I) complexes, Au(III) complexes can inhibit the activities of thiol-containing enzymes, including thioredoxin reductase, via ligand exchange reactions to form Au-S(Se) bonds. Nonetheless, there are examples of physiologically stable Au(III) and Au(I) complexes, such as [Au(TPP)]Cl (H2TPP = 5,10,15,20-tetraphenylporphyrin) and [Au(dppe)2]Cl (dppe = 1,2-bis(diphenylphosphanyl)ethane), which are known to display highly potent in vitro and in vivo anticancer activities. In this review, we summarize our current understanding of anticancer gold complexes, including their mechanisms of action and the approaches adopted to improve their anticancer efficiency. Some recent examples of gold anticancer chemotherapeutics are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.