Single nucleotide polymorphism (SNP) prioritization based on the phenotypic risk is essential for association studies. Assessment of the risk requires access to a variety of heterogeneous biological databases and analytical tools. FASTSNP (function analysis and selection tool for single nucleotide polymorphisms) is a web server that allows users to efficiently identify and prioritize high-risk SNPs according to their phenotypic risks and putative functional effects. A unique feature of FASTSNP is that the functional effect information used for SNP prioritization is always up-to-date, because FASTSNP extracts the information from 11 external web servers at query time using a team of web wrapper agents. Moreover, FASTSNP is extendable by simply deploying more Web wrapper agents. To validate the results of our prioritization, we analyzed 1569 SNPs from the SNP500Cancer database. The results show that SNPs with a high predicted risk exhibit low allele frequencies for the minor alleles, consistent with a well-known finding that a strong selective pressure exists for functional polymorphisms. We have been using FASTSNP for 2 years and FASTSNP enables us to discover a novel promoter polymorphism. FASTSNP is available at .
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions.
T he scientific, academic, medical and data science communities have come together in the face of the COVID-19 pandemic crisis to rapidly assess novel paradigms in artificial intelligence (AI) that are rapid and secure, and potentially incentivize data sharing and model training and testing without the usual privacy and data ownership hurdles of conventional collaborations 1,2 . Healthcare providers, researchers and industry have pivoted their focus to address unmet and critical clinical needs created by the crisis, with remarkable results [3][4][5][6][7][8][9] . Clinical trial recruitment has been expedited and facilitated by national regulatory bodies and an international cooperative spirit 10-12 . The data analytics and AI disciplines have always fostered open
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.