As the first example of a photocatalytic system for splitting water without additional cocatalysts and photosensitizers, the comparatively cost-effective Cu I -based MOF, Cu-I-bpy (bpy=4,4'-bipyridine) exhibited highly efficient photocatalytic hydrogen production (7.09 mmol g h ). Density functional theory (DFT) calculations established the electronic structures of Cu-I-bpy with a narrow band gap of 2.05 eV, indicating its semiconductive behavior, which is consistent with the experimental value of 2.00 eV. The proposed mechanism demonstrates that Cu I clusters of Cu-I-bpy serve as photoelectron generators to accelerate the copper(I) hydride interaction, providing redox reaction sites for hydrogen evolution. The highly stable cocatalyst-free and self-sensitized Cu-I-bpy provides new insights into the future design of cost-effective d -based MOFs for highly efficient and long-term solar fuels production.
Selective adsorption and separation of CO2 are of great importance for different target applications. Metal-organic frameworks (MOFs) represent a promising class of porous materials for this purpose. Here we present a unique MOF material, [Cu(tba)2]n (tba = 4-(1H-1,2,4-triazol-1-yl)benzoate), which shows high CO2 adsorption selectivity over CH4/H2/O2/Ar/N2 gases (with IAST selectivity of 41-68 at 273 K and 33-51 at 293 K). By using a critical point dryer, the CO2 molecules can be well sealed in the 1D channels of [Cu(tba)2]n to allow a single-crystal X-ray analysis, which reveals the presence of not only C(δ+)-H···O(δ-) bonds between the host framework and CO2 but also quadrupole-quadrupole (CO2(δ-)···(δ+)CO2) interactions between the CO2 molecules. Furthermore, [Cu(tba)2]n will suffer divergent kinetic and thermodynamic hydration processes to form its isostructural hydrate {[Cu(tba)2](H2O)}n and a mononuclear complex [Cu(tba)2(H2O)4] via single-crystal to single-crystal transformations.
The template-directed synthesis of a novel luminescent Tb-MOF material which could serve as a multi-responsive probe for sensing Fe3+ and Al3+ ions in water, as well as p-xylene and nitrobenzene in the vapor state is presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.