Text-based input becomes a common channel for humans in sharing their opinions/emotions to the product or service through online social media, shopping platform etc. Humans are easy to make errors in interpreting emotions, especially the emotion that derived from text based. The main aim of this study is to develop text-based emotion recognition and prediction system. Several market challenges facing in the advancement of emotion analysis with accuracy being the main issue. Therefore, four supervised machine learning classification algorithms such as Multinomial Naïve Bayes, Support Vector Machine, Decision Trees, and k-Nearest Neighbors were investigated. The model was developed based on Ekman’s six basic emotions which are anger, fear, disgust, joy, guilt and sadness. Data pre-processing techniques such as stemming, stop-words, digits and punctuation marks removal, spelling correction, and tokenization were implemented. A benchmark of ISEAR (International Survey on Emotion Antecedents and Reactions) dataset was used to test all models. Multinomial Naïve Bayes classifier resulted the best performance with an average accuracy of 64.08%. Finally, the best model was integrated to graphical user interface using Python Tkinter library to complete the whole system development. Besides, the detailed performance of the best model such as tf-idf and count vectorizer, confusion matrix, precision-recall rate, as well as ROC (Receiver Operating Characteristic) score were also discussed. Text-based emotion prediction system to interpret and understand human emotions was successfully developed.
Radio Frequency Identification (RFID) technology has improved the operational efficiency and process flow in the distribution of warehouse management system (WMS) around the globe. Nonetheless, a moving or missing tag as well as known and unknown tag's location that may occur in the detection could reduce the efficiency of process flow. This study aims at identifying the location of goods in between two RFID reading zones by means of machine learning, particularly Support Vector Machine (SVM). A total of seven statistical features are extracted from the received signal strength (RSS) value from the raw RFID readings. SVM classifier are evaluated by considering the combination of different statistical features namely COMBINE to produce a more effective classification in comparison to individual statistical feature. The performance of the classifier demonstrated a classification accuracy of approximately 94% by considering all features whereas the performance of the classifier by considering individual features alone is below than 90%. This preliminary study establishes the applicability of the proposed automatic identification is able to provide the management of goods as well as supply chain reasonably well without human intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.