A total of 91 type and reference strains of the Lactobacillus casei group and the L acidophilus group were characterized by the automated ribotyping device Riboprinter" microbial characterization system. The L. casei group was divided into five
In order to characterize the genus Bifidobacterium, ribopatterns and approximately 500 bp (Escherichia coli positions 27 to 520) of 16S rRNA gene sequences of 28 type strains and 64 reference strains of the genus Bifidobacterium were determined. Ribopatterns obtained from Bifidobacterium strains were divided into nine clusters (clusters I-IX) with a similarity of 60%. Cluster V, containing 17 species, was further subdivided into 22 subclusters with a similarity of 90%. In the genus Bifidobacterium, four groups were shown according to Miyake et al.: (i) the Bifidobacterium longum infantis-longum-suis type group, (ii) the B. catenulatum-pseudocatenulatum group, (iii) the B. gallinarum-saeculare-pullorum group, and (iv) the B. coryneforme-indicum group, which showed higher than 97% similarity of the 16S rRNA gene sequences in each group. Using ribotyping analysis, unique ribopatterns were obtained from these species, and they could be separated by cluster analysis. Ribopatterns of six B. adolescentis strains were separated into different clusters, and also showed diversity in 16S rRNA gene sequences. B. adolescentis consisted of heterogeneous strains. The nine strains of B. pseudolongum subsp. pseudolongum were divided into five subclusters. Each type strain of B. pseudolongum subsp. pseudolongum and B. pseudolongum subsp. globosum and two intermediate groups, which were suggested by Yaeshima et al., consisted of individual clusters. B. animalis subsp. animalis and B. animalis subsp. lactis could not be separated by ribotyping using Eco RI. We conclude that ribotyping is able to provide another characteristic of Bifidobacterium strains in addition to 16S rRNA gene sequence phylogenetic analysis, and this information suggests that ribotyping analysis is a useful tool for the characterization of Bifidobacterium species in combination with other techniques for taxonomic characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.