<p>PLP-dependent enzymes are attractive biocatalysts due to their ability to perform complexity building transformations on amine-containing, readily available substrates from the chiral pool such as amino acids. Although many classes of PLP-dependent enzymes are routinely employed in synthesis, select families remain underutilized due to limitations in practical scalability. For example, some PLP-dependent enzymes act on prohibitively expensive substrates such as coenzyme A-bound substrates. To address this challenge, we have investigated the mechanism of action of coenzyme A in gating catalysis of one α-oxoamine synthase, SxtA AOS. Through investigation of the reactivity of SxtA AOS with panels of substrates and in the presence of various coenzyme A mimics as well as monitoring PLP absorbances and the behavior of SxtA AOS variants, we have determined that activity is gated through the binding of the eastern phosphodiester group by the residue Arg142 that is located in a tunnel that leads to the active site. To circumvent this gating mechanism, a synthetic CoA mimic additive was designed that allows for enhanced reactivity with non-CoA substrates. These findings outline a strategy for employing AOS enzymes without the need for cost-prohibitive coenzyme A substrates.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.