PurposeLong COVID, also known as post-acute sequelae of COVID-19, refers to the constellation of long-term symptoms experienced by people suffering persistent symptoms for one or more months after SARS-CoV-2 infection. Blood biomarkers can be altered in long COVID patients; however, biomarkers associated with long COVID symptoms and their roles in disease progression remain undetermined. This study aims to systematically evaluate blood biomarkers that may act as indicators or therapeutic targets for long COVID.MethodsA systematic literature review in PubMed, Embase, and CINAHL was performed on 18 August 2022. The search keywords long COVID-19 symptoms and biomarkers were used to filter out the eligible studies, which were then carefully evaluated.ResultsIdentified from 28 studies and representing six biological classifications, 113 biomarkers were significantly associated with long COVID: (1) Cytokine/Chemokine (38, 33.6%); (2) Biochemical markers (24, 21.2%); (3) Vascular markers (20, 17.7%); (4) Neurological markers (6, 5.3%); (5) Acute phase protein (5, 4.4%); and (6) Others (20, 17.7%). Compared with healthy control or recovered patients without long COVID symptoms, 79 biomarkers were increased, 29 were decreased, and 5 required further determination in the long COVID patients. Of these, up-regulated Interleukin 6, C-reactive protein, and tumor necrosis factor alpha might serve as the potential diagnostic biomarkers for long COVID. Moreover, long COVID patients with neurological symptoms exhibited higher levels of neurofilament light chain and glial fibrillary acidic protein whereas those with pulmonary symptoms exhibited a higher level of transforming growth factor beta.ConclusionLong COVID patients present elevated inflammatory biomarkers after initial infection. Our study found significant associations between specific biomarkers and long COVID symptoms. Further investigations are warranted to identify a core set of blood biomarkers that can be used to diagnose and manage long COVID patients in clinical practice.
Background: Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants. Methods: We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-kB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells. Findings: The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity. Interpretation: Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro. Funding: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section
Patients with severe COVID‐19 often suffer from lymphopenia, which is linked to T‐cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS‐CoV‐2‐infected cells. We adopted a reverse time‐order gene coexpression network approach to analyze time‐series RNA‐sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS‐CoV‐2‐activated nuclear factor‐κB (NF‐κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID‐19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross‐referencing our transcriptomic and epigenomic data sets revealed that coupling NF‐κB and IRF1 pathways mediate programmed death ligand‐1 (PD‐L1) immunosuppressive programs. Interestingly, we observed higher PD‐L1 expression in Omicron‐infected cells than SARS‐CoV‐2 infected cells. Blocking PD‐L1 at an early stage of virally‐infected AAV‐hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS‐CoV‐2‐mediated NF‐κB and IRF1‐PD‐L1 axis may represent an alternative strategy to reduce COVID‐19 severity.
Triple-negative breast cancer (TNBC) is the most aggressive and challenging breast cancer subtype, which does not respond to traditional endocrine and anti-HER2-targeted therapies. PD-L1 is highly enriched in TNBC and has been considered a therapeutic target. Despite the excellent anti-cancer activity, the atezolizumab-based chimeric antigen receptor (CAR) T cells showed a robust off-target effect. In addition, the treatment of solid tumors with CAR-T is limited by abnormal glycosylation in malignant tumors. Targeting glycosylated PD-L1 (gPD-L1) provided tissue specificity against TNBC, implying it can prevent antigen escape and off-target effect. In this study, we generated gPD-L1 CAR-T cells using lentiviral vectors expressing the scFv regions of the anti-gPD-L1 antibody. The gPD-L1 CAR-T cells exhibited antigen-specific activation, cytokine production, and cytolytic activity against TNBCs in vitro and in the xenograft tumors model. CyTOF and single-cell RNA sequencing (scRNA-seq) showed distinct IFNγ-positive cell types. Mechanistically, IFNγ crosstalked with EGFR signaling through Src activation and, in turn, triggered B3GNT3-mediated PD-L1 glycosylation. Inhibition of Src resulted in reduced gPD-L1 expression in TNBC. CRISPR/Cas9 knockout of B3GNT3 in TNBC cells impaired gPD-L1 CAR-T response. As a result of nonautonomous gPDL1 amplification in TNBCs, gPD-L1 CAR-T cells continued to annihilate TNBCs. Additionally, since gPD-L1 CAR-T cells provided higher specificity on TNBC, they had lower normal tissue toxicity. Overall, gPD-L1 CAR-T exhibits excellent anti-tumor activity against TNBCs, and it could be a promising immunotherapy tool to treat TNBCs in clinic. Furthermore, targeting glycosylation moiety on the tumor antigen is a novel approach to lessen CAR-T toxicity in patients. Citation Format: Chia-Wei Li, Shih-Han Wang, Yun-Ju Lai, Jyun Wang, Chun-Tse Kuo, Shih-Duo Hsu Hung, Shou-Hou Liu. Non-autonomous enhancement of gPDL1 CAR-T annihilates TNBC development. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4106.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.