Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, while vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression1–4. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression5–10. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the Bromodomain and Extra Terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by “mimicking” acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages and confers protection against LPS-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Fung et al., 2015), that described how we intended to replicate selected experiments from the paper "Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia" (Dawson et al.
The jumonji (JMJ) family of histone demethylases are Fe2+- and α-ketoglutarate-dependent oxygenases that are essential components of regulatory transcriptional chromatin complexes1–4. These enzymes demethylate lysine residues in histones in a methylation-state and sequence-specific context5. Considerable effort has been devoted to gaining a mechanistic understanding of the roles of histone lysine demethylases in eukaryotic transcription, genome integrity and epigenetic inheritance2,4,6, as well as in development, physiology and disease3,7. However, because of the absence of any selective inhibitors, the relevance of the demethylase activity of JMJ enzymes in regulating cellular responses remains poorly understood. Here we present a structure-guided small-molecule and chemoproteomics approach to elucidating the functional role of the H3K27me3-specific demethylase subfamily (KDM6 subfamily members JMJD3 and UTX)8. The liganded structures of human and mouse JMJD3 provide novel insight into the specificity determinants for cofactor, substrate and inhibitor recognition by the KDM6 subfamily of demethylases. We exploited these structural features to generate the first small-molecule catalytic site inhibitor that is selective for the H3K27me3-specific JMJ subfamily. We demonstrate that this inhibitor binds in a novel manner and reduces lipopolysaccharide-induced proinflammatory cytokine production by human primary macrophages, a process that depends on both JMJD3 and UTX. Our results resolve the ambiguity associated with the catalytic function of H3K27-specific JMJs in regulating disease-relevant inflammatory responses and provide encouragement for designing small-molecule inhibitors to allow selective pharmacological intervention across the JMJ family.
55 Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which confer a poor prognosis and are often refractory to conventional therapies. Recent efforts have begun to unravel the molecular pathogenesis of these malignancies. Several groups have demonstrated that MLL-fusions associate with two macromolecular chromatin complexes; the polymerase associated factor (PAFc) complex, which interacts with the N-terminal domain of MLL, a portion of the protein that is retained in all the described fusions, or the super elongation complex (SEC), via interaction with the C-terminal fusion partner. These complexes play an integral role in regulating transcriptional elongation and this function appears to be aberrantly co-opted by the MLL-fusions to initiate and perpetuate transcriptional programmes that culminate in leukaemia. In this study we used a systematic global proteomic survey incorporating quantitative mass spectrometry to demonstrate that MLL-fusions, as part of SEC and PAFc complexes, are associated with the BET family of acetyl lysine recognition chromatin “adaptor” proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. Targeting the BET proteins to alter aberrant transcriptional elongation has recently been demonstrated to be possible using small molecule inhibitors that selectively bind the tandem bromodomain at the amino-terminus of the ubiquitously expressed BET proteins (BRD2/BRD3/BRD4). We developed a novel class of potent small molecule inhibitors to the BET family, which is chemically distinct to previously published BET-inhibitors. We then used this new compound (I-BET151) to demonstrate its profound and selective efficacy against human MLL-fusion leukaemic cell lines in liquid culture as well as clonogenic assays in methylcellulose. We also establish that primary murine progenitors retrovirally transformed with MLL-ENL and MLL-AF9 are equally susceptible to treatment with I-BET151. We show that the main phenotypic consequence of BET inhibition in MLL fusion leukaemia is a dramatic early induction of cell cycle arrest and apoptosis. Global gene-expression profiling, following I-BET151 treatment in two different human MLL-fusion leukaemia cell lines (expressing MLL-AF4 and MLL-AF9), highlights a common differentially expressed gene signature that accounts for this phenotype. Importantly, chromatin immunoprecipitation analyses at direct MLL target genes including BCL2, C-MYC and CDK6, indicate that I-BET151 selectively inhibits the recruitment of BET family members BRD3/BRD4, and SEC and PAFc components. These events result in the inefficient phosphorylation and release of paused POL-II from the TSS of these genes providing mechanistic insight into the mode of action of I-BET151 in MLL-fusion leukaemia. We subsequently established the therapeutic efficacy of I-BET151 in vivo by demonstrating dramatic disease control in murine models of MLL-AF4 and MLL-AF9 leukaemia. Finally, we also demonstrate that I-BET151 accelerates apoptosis in primary leukaemic cells from a large number of patients with various MLL-fusion leukaemias, by affecting a similar transcription programme to that identified in the human leukaemic cell lines. Importantly, we also demonstrate that I-BET151 significantly reduces the clonogenic potential of isolated primary leukaemic stem cells, suggesting that disease eradication may be possible. These data highlight a new paradigm for drug discovery targeting the protein-protein interactions of chromatin-associated proteins. We demonstrate that small molecules that perturb the interaction of BRD3/4 with chromatin have therapeutic potential in MLL fusion leukaemias and moreover, we provide the molecular mechanism to account for this therapeutic efficacy. Finally, our results emphasize an emerging role for targeting aberrant transcriptional elongation in oncogenesis. Disclosures: Prinjha: GSK: Employment. Chung:GSK: Employment. Lugo:GSK: Employment. Beinke:GSK: Employment. Soden:GSK: Employment. Mirguet:GSK: Employment. Jeffrey:GSK: Employment. Lee:GSK: Employment. Kouzarides:GSK: Consultancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.