We develop a general compactification framework to facilitate analysis of nonautonomous ODEs where nonautonomous terms decay asymptotically. The strategy is to compactify the problem: the phase space is augmented with a bounded but open dimension and then extended at one or both ends by gluing in flow-invariant subspaces that carry autonomous dynamics of the limit systems from infinity. We derive the weakest decay conditions possible for the compactified system to be continuously differentiable on the extended phase space. This enables us to use equilibria and other compact invariant sets of the limit systems from infinity to analyze the original nonautonomous problem in the spirit of dynamical systems theory. Specifically, we prove that solutions of interest are contained in unique invariant manifolds of saddles for the limit systems when embedded in the extended phase space. The uniqueness holds in the general case, that is even if the compactification gives rise to a centre direction and the manifolds become centre or centre-stable manifolds. A wide range of problems including pullback attractors, rate-induced critical transitions (R-tipping) and nonlinear wave solutions fit naturally into our framework, and their analysis can be greatly simplified by the compactification.
Rate-induced tipping (R-tipping) occurs when time-variation of input parameters of a dynamical system interacts with system timescales to give genuine nonautonomous instabilities. Such instabilities appear as the input varies at some critical rates and cannot, in general, be understood in terms of autonomous bifurcations in the frozen system with a fixed-in-time input. This paper develops an accessible mathematical framework for R-tipping in multidimensional nonautonomous dynamical systems with an autonomous future limit. We focus on R-tipping via loss of tracking of base attractors that are equilibria in the frozen system, due to crossing what we call regular R-tipping thresholds. These thresholds are anchored at infinity by regular R-tipping edge states: compact normally hyperbolic invariant sets of the autonomous future limit system that have one unstable direction, orientable stable manifold, and lie on a basin boundary. We define R-tipping and critical rates for the nonautonomous system in terms of special solutions that limit to a compact invariant set of the autonomous future limit system that is not an attractor. We focus on the case when the limit set is a regular edge state, introduce the concept of edge tails, and rigorously classify R-tipping into reversible, irreversible, and degenerate cases. The central idea is to use the autonomous dynamics of the future limit system to analyse R-tipping in the nonautonomous system. We compactify the original nonautonomous system to include the limiting autonomous dynamics. Considering regular R-tipping edge states that are equilibria allows us to prove two results. First, we give sufficient conditions for the occurrence of R-tipping in terms of easily testable properties of the frozen system and input variation. Second, we give necessary and sufficient conditions for the occurrence of reversible and irreversible R-tipping in terms of computationally verifiable (heteroclinic) connections to regular R-tipping edge states in the autonomous compactified system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.