Increasing attention has been attracted by exosomes in blood-based diagnosis because cancer cells release more exosomes in serum than normal cells and these exosomes overexpress a certain number of cancer-related biomarkers. However, capture and biomarker analysis of exosomes for clinical application are technically challenging. In this study, we developed a microfluidic chip for immunocapture and quantification of circulating exosomes from small sample volume and applied this device in clinical study. Circulating EpCAM-positive exosomes were measured in 6 cases breast cancer patients and 3 healthy controls to assist diagnosis. A significant increase in the EpCAM-positive exosome level in these patients was detected, compared to healthy controls. Furthermore, we quantified circulating HER2-positive exosomes in 19 cases of breast cancer patients for molecular classification. We demonstrated that the exosomal HER2 expression levels were almost consistent with that in tumor tissues assessed by immunohistochemical staining. The microfluidic chip might provide a new platform to assist breast cancer diagnosis and molecular classification.
Recent studies suggested an association of endothelial microRNA-126 (miR-126) with type 2 diabetes mellitus (T2DM). In the current study, we examined whether circulating miR-126 is associated with T2DM and pre-diabetic syndrome. The study included 82 subjects with impaired glucose tolerance (IGT), 75 subjects with impaired fasting glucose (IFG), 160 patients with newly diagnosed T2DM, and 138 healthy individuals. Quantitative polymerase chain reaction (qPCR) was used to examine serum miR-126. Serum miR-126 was significantly lower in IGT/IFG subjects and T2DM patients than in healthy controls (p < 0.05). After six months of treatment (diet control and exercise in IGT/IFG subjects, insulin plus diet control and exercise in T2DM patients), serum miR-126 increased significantly (p < 0.05). An analysis based on serum miR-126 in the sample revealed a significantly higher odds ratio (OR) for the subjects with the lowest 1/3 of serum miR-126 for T2DM (OR: 3.500, 95% confidence interval: 1.901–6.445, p < 0.05) than subjects within the highest 1/3 of serum miR-126. Such an association was still apparent after adjusting for other major risk factors. The area under the curve (AUC) for the receiver-operating characteristic (ROC) analysis was 0.792 (95% confidence interval: 0.707–0.877, p < 0.001). These results encourage the use of serum miR-126 as a biomarker for pre-diabetes and diabetes mellitus, as well as therapeutic response.
Recent studies have demonstrated that lymphocyte-derived microparticles (LMPs) impair endothelial cell function. However, no data currently exist regarding the contribution of LMPs in the regulation of angiogenesis. In the present study, we investigated the effects of LMPs on angiogenesis in vivo and in vitro and demonstrated that LMPs strongly suppressed aortic ring microvessel sprouting and in vivo corneal neovascularization. In vitro, LMPs considerably diminished human umbilical vein endothelial cell survival and proliferation in a concentration-dependent manner. Mechanistically, the antioxidants U-74389G and U-83836E were partially protective against the antiproliferative effects of LMPs, whereas the NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium significantly abrogated these effects. Moreover, LMPs increased not only the expression of the NOX subunits gp91(phox), p22(phox), and p47(phox), but also the production of ROS and NOX-derived superoxide (O(2)(-)). Importantly, LMPs caused a pronounced augmentation in the protein expression of the CD36 antiangiogenic receptor while significantly downregulating the protein levels of VEGF receptor type 2 and its downstream signaling mediator, phosphorylated ERK1/2. In summary, LMPs potently suppress neovascularization in vivo and in vitro by augmenting ROS generation via NOX and interfering with the VEGF signaling pathway.
KH902 was effective to prevent the formation of experimental CNV and also to treat pre-existed CNV without evidence of toxicity. This study suggests that KH902 has promise as a local anti-angiogenic treatment of CNV-related diseases.
PM2.5 is the main particulate air pollutant whose aerodynamic diameter is less than 2.5 micron. The inflammation of various respiratory diseases are associated with PM2.5 inhalation. Pro-inflammatory cytokine IL-1β generated from effected cells usually plays a crucial role in many kinds of lung inflammatory reactions. The exacerbation of Th immune responses are identified in some PM2.5 related diseases. To elucidate the underlying mechanism of PM2.5-induced acute lung inflammation, we exposed Balb/c mice to PM2.5 intratracheally and established a mice model. Acute lung inflammation and increased IL-1β expression was observed after PM2.5 instillation. Regulatory factors of IL-1β (TLR4/MyD88 signaling pathway and NLRP3 inflammasome) participated in this lung inflammatory response as well. Treatment with compound essential oils (CEOs) substantially attenuated PM2.5-induced acute lung inflammation. The decreased IL-1β and Th immune responses after CEOs treatment were significant. PM2.5 may increase the secretion of IL-1β through TLR4/MyD88 and NLRP3 pathway resulting in murine airway inflammation. CEOs could attenuate the lung inflammation by reducing IL-1β and Th immune responses in this model. This study describes a potentially important mechanism of PM2.5-induced acute lung inflammation and that may bring about novel therapies for the inflammatory diseases associated with PM2.5 inhalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.