Detection of moving object is a hot topic in computer vision. Traditionally, it is detected for every pixel in whole image by Gaussian mixture background model, which may waste more time and space. In order to improving the computational efficiency, an advanced Gaussian mixture model based on Region of Interest was proposed. Firstly, the solution finds out the most probably region where the target may turn up. And then Gaussian mixture background model is built in this area. Finally, morphological filter algorithm is used for improving integrity of the detected targets. Results show that the improved method could have a more perfect detection but no more time increasing than typical method.
This paper proposed a lane detection algorithm for urban environment. The algorithm was concerned on selecting an appropriate limited region of interest (ROI) by OTSU segmentation. Then candidates of lane markers were extracted by Canny, finally the lane boundaries were detected by Hough transform. The limited ROI helps to identification lane in an appropriate region. This process have the effect of enhancement in the speed of operation. The proposed algorithm was simulated in MATLAB. The test databases were shared by Fondazione Bruno Kessler (FBK). The experiments show that lane boundaries can be detected correctly although they are fade. Feature-based method is usually affected by intension of image. Several characteristics of roads need to be considered further for detection more precisely.
A method for detection and stereoscopic measuring lane markers for safety driver assistance was proposed. Firstly, it was concerned on selecting an appropriate limited region of interest by OTSU segmentation, which would be candidate areas for lane boundaries detection by Sobel and piecewise fitting. Results of lane detection were combined with calibrated camera parameters for measuring distance between lane and ego car.Experiments show that lane markers can be detected correctly although some situations are fade. In order to detecting and measuring lane markers more precisely, several characteristics of test environments need to be considered in further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.