An ongoing novel coronavirus outbreak (COVID-19) started in Wuhan, China, in December 2019. Currently, the spatiotemporal epidemic transmission, prediction, and risk are insufficient for COVID-19 but we urgently need relevant information globally. We have developed a novel two-stage simulation model to simulate the spatiotemporal changes in the number of cases and estimate the future worldwide risk. Simulation results show that if there is no specific medicine for it, it will form a global pandemic. Taiwan, South Korea, Hong Kong, Japan, Thailand, and the United States are the most vulnerable. The relationship between each country's vulnerability and days before the first imported case occurred shows an exponential decrease. We successfully predicted the outbreak of South Korea, Japan, and Italy in the early stages of the global pandemic based on the information before February 12, 2020. The development of the epidemic is now earlier than we expected. However, the trend of spread is similar to our estimation.
Heavy rainfall and strong wind are the two main sources of disasters that are caused by tropical cyclones (TCs), and typhoons with different characteristics may induce different agricultural losses. Traditionally, the classification of typhoon intensity has not considered the amount of rainfall. Here, we propose a novel approach to calculate the typhoon type index (TTI). A positive TTI represents a “wind type” typhoon, where the overall damage in a certain area from TCs is dominated by strong wind. On the other hand, a negative TTI represents a “rain type” typhoon, where the overall damage in a certain area from TCs is dominated by heavy rainfall. From the TTI, the vulnerability of crop losses from different types of typhoons can be compared and explored. For example, Typhoon Kalmaegi (2008) was classified as a rain-type typhoon (TTI = −1.22). The most affected crops were oriental melons and leafy vegetables. On the contrary, Typhoon Soudelor (2015) was classified as a significant wind-type typhoon in most of Taiwan (TTI = 1.83), and the damaged crops were mainly bananas, bamboo shoots, pomelos, and other crops that are easily blown off by strong winds. Through the method that is proposed in this study, we can understand the characteristics of each typhoon that deviate from the general situation and explore the damages that are mainly caused by strong winds or heavy rainfall at different locations. This approach can provide very useful information that is important for the disaster analysis of different agricultural products.
In the past few years, human health risks caused by fine particulate matters (PM2.5) and other air pollutants have gradually received attention. According to the Disaster Prevention and Protection Act of Taiwan’s Government enforced in 2017, “suspended particulate matter” has officially been acknowledged as a disaster-causing hazard. The long-term exposure to high concentrations of air pollutants negatively affects the health of citizens. Therefore, the precise determination of the spatial long-term distribution of hazardous high-level air pollutants can help protect the health and safety of residents. The analysis of spatial information of disaster potentials is an important measure for assessing the risks of possible hazards. However, the spatial disaster-potential characteristics of air pollution have not been comprehensively studied. In addition, the development of air pollution potential maps of various regions would provide valuable information. In this study, Hsinchu County was chosen as an example. In the spatial data analysis, historical PM2.5 concentration data from the Taiwan Environmental Protection Administration (TWEPA) were used to analyze and estimate spatially the air pollution risk potential of PM2.5 in Hsinchu based on a geographic information system (GIS)-based radial basis function (RBF) spatial interpolation method. The probability that PM2.5 concentrations exceed a standard value was analyzed with the exceedance probability method; in addition, the air pollution risk levels of tourist attractions in Hsinchu County were determined. The results show that the air pollution risk levels of the different seasons are quite different. The most severe air pollution levels usually occur in spring and winter, whereas summer exhibits the best air quality. Xinfeng and Hukou Townships have the highest potential for air pollution episodes in Hsinchu County (approximately 18%). Hukou Old Street, which is one of the most important tourist attractions, has a relatively high air pollution risk. The analysis results of this study can be directly applied to other countries worldwide to provide references for tourists, tourism resource management, and air quality management; in addition, the results provide important information on the long-term health risks for local residents in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.