Cephalopods use a diverse range of body patterns for visual communication. Each pattern is composed of several distinct chromatic components that are under neural control and are expressed dynamically. In the oval squid Sepioteuthis lessoniana, males use distinct body patterns to interact with females and other males at the spawning site. To systematically examine their visual signals during reproductive behavior, an ethogram of 27 body pattern components produced by S. lessoniana was observed in both the wild and captivity; these were then characterized. Five behaviors were commonly seen among these reproductively active squids, namely parallel swimming, male guarding, male-male fighting, male-parallel mating, and male-upturn mating. Each behavior was found to be composed of the expression in a temporal sequence of different chromatic components. By analyzing the dynamic body patterning time series associated with each behavior, it was found that a certain subset of components was expressed simultaneously or sequentially in response to conspecifics. Importantly, the results not only revealed that each behavior is composed of multiple chromatic components, but the findings also showed that each component is often associated with multiple behaviors. To gain insight into the visual communication associated with each behavior in terms of the body patterning's key components, the co-expression frequencies of two or more components at any moment in time were calculated in order to assess uniqueness when distinguishing one behavior from another. This approach identified the minimum set of key components that, when expressed together, represents an unequivocal visual communication signal. While the interpretation of the signal and the associated response of the receiver during visual communication are difficult to determine, the concept of the component assembly is similar to a typical language within which individual words often have multiple meanings, but when they appeared together with other words, the message becomes unequivocal. The present study thus demonstrates that dynamic body pattering, by expressing unique sets of key components acutely, is an efficient way of communicating behavioral information between oval squids.
All human organs consist of multiple types of cells organized in a complex pattern to meet specific functional needs. One possible approach for reconstructing human organs in vitro is to generate cell sheets of a specific pattern and later stack them systematically by layer into a three-dimensional organoid. However, many commonly used cell patterning techniques suffer drawbacks such as dependence on sophisticated instruments and manipulation of cells under suboptimal growth conditions. Here, we describe a simple cell patterning method that may overcome these problems. This method is based on magnetic force and photoresponsive poly (ethylene glycol) diacrylate (PEG-DA) hydrogels. The PEG-DA hydrogel was magnetized by mixing with iron ferrous microparticles and then fabricated into blocks with a specific pattern by photolithography. The resolution of the hydrogel empty space pattern was approximately 150 μm and the generated hydrogel blocks can be remotely manipulated with a magnet. The magnetic PEG-DA blocks were used as a stencil to define the area for cell adhesion in the cell culture dish, and the second types of cells could be seeded after the magnetic block was removed to create heterotypic cell patterns. Cell viability assay has demonstrated that magnetic PEG-DA and the patterning process produced negligible effects on cell growth. Together, our results indicate that this magnetic hydrogel-based cell patterning method is simple to perform and is a useful tool for tissue surrogate assembly for disease mechanism study and drug screening.
Oval squids are polyandrous, with one female mating with multiple males during the spawning season. There are two alternative male mating tactics used by Sepioteuthis lessoniana. Larger males place spermatophores at the opening of the oviduct using a male-parallel mating posture, whereas smaller males attach spermatophores around the female buccal membrane using a male-upturned mating posture. If the route of egg transportation is taken into consideration, male-parallel mating would be expected to result in higher fertilization success than male-upturned mating. Although these male mating tactics are largely dependent on the body size of the male relative to that of the female, it is unclear how female choice affects the male's mating tactics and his mating success. Squids are highly visual animals, and they communicate through dynamic body patterning. In the present study, we observed that smaller male squids in captivity would attempt to mate with a larger female using the male-parallel tactic repeatedly, but they failed to be successful most of the time because of a rejection signal by the female. In contrast, when the males switched to the male-upturned tactic, the mating success rate was increased significantly, with much less female rejection signal. This finding suggests that female squids signal their mating receptivity visually and that male squids alter their mating tactics accordingly. This is the evidence to support the hypothesis that the switch in male mating tactics depends on female choice in oval squids and that this is transmitted via visual communication.
Detection of individual target cells among a large amount of blood cells is a major challenge in clinical diagnosis and laboratory protocols. Many researches show that two dimensional cells array technology can be incorporated into routine laboratory procedures for continuously and quantitatively measuring the dynamic behaviours of large number of living cells in parallel, while allowing other manipulations such as staining, rinsing, and even retrieval of targeted cells. In this study, we present a high-density cell self-assembly technology capable of quickly spreading over 300 000 cells to form a dense mono-to triple-layer cell arrangement in 5 min with minimal stacking of cells by the gentle incorporation of gravity and peripheral micro flow. With this self-assembled cell arrangement (SACA) chip technology, common fluorescent microscopy and immunofluorescence can be utilized for detecting and analyzing target cells after immuno-staining. Validated by experiments with real human peripheral blood samples, the SACA chip is suitable for detecting rare cells in blood samples with a ratio lower than 1/100 000. The identified cells can be isolated and further cultured in-situ on a chip for follow-on research and analysis. Furthermore, this technology does not require external mechanical devices, such as pump and valves, which simplifies operation and reduces system complexity and cost. The SACA chip offers a high-efficient, economical, yet simple scheme for identification and analysis of rare cells. Therefore, potentially SACA chip may provide a feasible and economical platform for rare cell detection in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.