The development of opioid-induced analgesic tolerance and hyperalgesia is a clinical challenge for managing chronic pain. Adaptive changes in protein translation in the nervous system are thought to promote opioid tolerance and hyperalgesia; however, how opioids drive such changes remains elusive. Here, we report that mammalian target of rapamycin (mTOR), which governs most protein translation, was activated in rat spinal dorsal horn neurons after repeated intrathecal morphine injections. Activation was triggered through μ opioid receptor and mediated by intracellular PI3K/Akt. Spinal mTOR inhibition blocked both induction and maintenance of morphine tolerance and hyperalgesia, without affecting basal pain perception or locomotor functions. These effects were attributed to the attenuation of morphine-induced increases in translation initiation activity, nascent protein synthesis, and expression of some known key tolerance-associated proteins, including neuronal NOS (nNOS), in dorsal horn. Moreover, elevating spinal mTOR activity by knocking down the mTOR-negative regulator TSC2 reduced morphine analgesia, produced pain hypersensitivity, and increased spinal nNOS expression. Our findings implicate the μ opioid receptor-triggered PI3K/Akt/mTOR pathway in promoting morphine-induced spinal protein translation changes and associated morphine tolerance and hyperalgesia. These data suggest that mTOR inhibitors could be explored for prevention and/or reduction of opioid tolerance in chronic pain management. IntroductionChronic pain is a major public health problem. About 116 million Americans (approximately 30% of the population) live with this disorder. The economic impact of chronic pain is equally large, at around $100 billion annually (1). Although recent advances have been made in the therapeutic management of chronic pain, opioids are still the gold standard for its pharmacological treatment in the clinical setting. However, long-term use of these drugs is often limited by the development of analgesic tolerance and hyperalgesia, phenomena observed in both laboratory animals and patients (2). Opioid tolerance is characterized by a progressive lack of response to opioids that can be overcome by escalating doses to achieve equivalent pain relief. In contrast, opioid-induced hyperalgesia is a sensitization process in which opioids paradoxically produce pain hypersensitivity. These undesirable manifestations, along with other adverse effects caused by escalating doses (e.g., oversedation, respiratory depression, and constipation), significantly decrease quality of life in patients with chronic pain.Despite intensive research into the neurobiological mechanisms of opioid-induced tolerance and hyperalgesia in the past decades, opioid-induced tolerance and hyperalgesia are still ineffectively managed by current drugs, in part because these drugs target a single mechanism and/or produce several side effects. It is well docu-
Despite using prescribed pain medications, patients with neuropathic pain continue to experience moderate to severe pain. There is a growing recognition of a potent peripheral opioid analgesia in models of inflammatory and neuropathic pain. The goal of this study was to characterize the temporal and spatial expression of mu opioid receptor (mOR) mRNA and protein in primary afferent neurons in a rat L5 spinal nerve ligation model of persistent neuropathic pain. Bilateral L4 and L5 dorsal root ganglia (DRGs), L4 and L5 spinal cord segments, and hind paw plantar skins were collected on days 0 (naïve), 3, 7, 14, and 35 post-spinal nerve ligation or post-sham surgery. We found that expression of mOR mRNA and protein in primary afferent neurons changed dynamically and site-specifically following L5 spinal nerve ligation. Real-time RT-PCR, immunohistochemistry, and Western blot analysis demonstrated a down-regulation of mOR mRNA and protein in the injured L5 DRG. In contrast, in the uninjured L4 DRG, mOR mRNA transiently decreased on day 7 and then increased significantly on day 14. Western blot analysis revealed a persistent increase in mOR protein expression, although immunohistochemistry showed no change in number of mOR-positive neurons in the uninjured L4 DRG. Interestingly, mOR protein expression was reduced in the skin on days 14 and 35 post-nerve injury and in the L4 and L5 spinal cord on day 35 post-nerve injury. These temporal and anatomically specific changes in mOR expression following nerve injury are likely to have functional consequences on pain-associated behaviors and opioid analgesia.
2-Methoxyestradiol (2ME) is an endogenous metabolite with estrogen receptorindependent anti-tumor activity. The current study seeks to determine the mechanism of antitumor activity of 2ME on human chondrosarcoma. 2ME caused a time-and dose-dependent cytotoxity in chondrosarcoma cells, while primary chondrocytes were minimally affected. Cells accumulated in G0/G1 phase in response to 2ME and DAPI stain indicated an induction of apoptosis. Bax, Cytochrome C, and Caspase-3 protein expression were increased, while p53 expression was decreased. A higher Bax/Bcl-2 ratio followed 2ME treatment. 2ME has a potentially promising role as a systemic therapy of chondrosarcoma when the mechanism of action is better delineated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.