It has been proposed that ligand occupancy of integrin ␣v3 with extracellular matrix ligands (e.g. vitronectin) plays a critical role in insulin-like growth factor-1 (IGF-1) signaling. We found that expression of ␣v3 enhanced IGF-1-induced proliferation of Chinese hamster ovary cells in serum-free conditions (in the absence of vitronectin). We hypothesized that the direct integrin binding to IGF-1 may play a role in IGF-1 signaling. We demonstrated that ␣v3 specifically and directly bound to IGF-1 in cell adhesion, enzyme-linked immunosorbent assay-type binding, and surface plasmon resonance studies. We localized the amino acid residues of IGF-1 that are critical for integrin binding by docking simulation and mutagenesis. We found that mutating two Arg residues at positions 36 and 37 in the C-domain of IGF-1 to Glu (the R36E/R37E mutation) effectively reduced integrin binding. Interestingly, although the mutant still bound to IGF1R, it was defective in inducing IGF1R phosphorylation, AKT and ERK1/2 activation, and cell proliferation. Furthermore wild type IGF-1 mediated co-precipitation of ␣v3 and IGF1R, whereas the R36E/R37E mutant did not, suggesting that IGF-1 mediates the interaction between ␣v3 and IGF1R. These results suggest that the direct binding to IGF-1 to integrin ␣v3 plays a role in IGF-1 signaling through ternary complex formation (␣v3-IGF-IGF1R), and integrin-IGF-1 interaction is a novel target for drug discovery.Integrins are a family of cell adhesion receptors that mediate cell-extracellular matrix (ECM) 3 interaction and cell-cell interaction (1). It has been proposed that signaling from inside the cells regulates the ligand binding affinity of integrins (insideout signaling) (2). Each integrin is a heterodimer containing ␣ and  subunits. At present 18 ␣ and 8  subunits have been identified that combine to form 24 integrins (3).It has been reported that integrin ␣v3 plays a role in cancer proliferation and invasiveness. High levels of integrin ␣v3 correlate with growth and/or progression of melanoma (4, 5), neuroblastoma (6), breast cancer (7, 8), colon cancer (9), ovarian cancer (10), and cervical cancer (11). Moreover, individuals homozygous for the 3L33P polymorphism that enhances the ligand binding affinity of 3 integrins have an increased risk to develop breast cancer, ovarian cancer, and melanoma (12). However, it remains unclear whether and how increased levels of ␣v3 on tumor cells contribute to cancer development.Insulin-like growth factor-1 (IGF-1) is a polypeptide hormone (75 kDa) that has a high degree of structural similarity to human proinsulin. IGF-1 acts through binding to the type I IGF receptor (IGF1R), a receptor tyrosine kinase. The IGF1R is a heterotetramer that consists of two ␣-subunits that contain the ligand-binding domains and two -subunits that contain the tyrosine kinase activity. After ligand binding, the receptor undergoes a conformational change resulting in the activation of the tyrosine kinase, which results in transphosphorylation of the opposite...
Introduction Allopregnanolone is an endogenous neurosteroid with the potential to be a novel regenerative therapeutic for Alzheimer's disease (AD). Foundations of mechanistic understanding and well‐established preclinical safety efficacy make it a viable candidate. Methods A randomized, double‐blinded, placebo‐controlled, single and multiple ascending dose trial was conducted. Intravenous allopregnanolone or placebo was administered once‐per‐week for 12 weeks with a 1‐month follow‐up. Participants with early AD (mild cognitive impairment due to AD or mild AD), a Mini‐Mental State Examination score of 20–26 inclusive, and age ≥55 years were randomized (6:2 to three allopregnanolone dosing cohorts or one placebo cohort). Primary endpoint was safety and tolerability. Secondary endpoints included pharmacokinetic (PK) parameters and maximally tolerated dose (MTD). Exploratory endpoints included cognitive and imaging biomarkers. Results A total of 24 participants completed the trial. Allopregnanolone was safe and well tolerated in all study participants. No differences were observed between treatment arms in the occurrence and severity of adverse events (AE). Most common AE were mild to moderate in severity and included rash (n = 4 [22%]) and fatigue (n = 3 [17%]). A single non‐serious AE, dizziness, was attributable to treatment. There was one serious AE not related to treatment. Pharmacokinetics indicated a predictable linear dose‐response in plasma concentration of allopregnanolone after intravenous administration over 30 minutes. The maximum plasma concentrations for the 2 mg, 4 mg, 6 mg, and 10 mg dosages were 14.53 ng/mL (+/−7.31), 42.05 ng/mL (+/−14.55), 60.07 ng/mL (+/−12.8), and 137.48 ng/mL (+/−38.69), respectively. The MTD was established based on evidence of allopregnanolone‐induced mild sedation at the highest doses; a sex difference in the threshold for sedation was observed (males 10 mg; females 14 mg). No adverse outcomes on cognition or magnetic resonance imaging–based imaging outcomes were evident. Conclusions Allopregnanolone was well tolerated and safe across all doses in persons with early AD. Safety, MTD, and PK profiles support advancement of allopregnanolone as a regenerative therapeutic for AD to a phase 2 efficacy trial. Trial registration ClinicalTrials.gov‐NCT02221622
Vancomycin, an important antibiotic against medically relevant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus, exerts its antibacterial effects by binding with moderate affinity to the C-terminal Lys-D-Ala-D-Ala motif (Kaa) of the bacterial cell wall peptide precursor. Essential for Kaa binding to vancomcyin is the free-carboxyl group on the terminal D-Ala in Kaa. In efforts to identify other Kaa-based peptides which bind vancomycin with higher affinity, we utilized our one-bead-one-compound (OBOC) combinatorial library approach, a method which has been widely used to discover highly specific ligands against various receptors. In standard OBOC peptide libraries, the C-terminal end of the synthesized peptide is tethered to a solid-support/resin, however, this study reports development of a synthetic strategy for generating OBOC peptide libraries with a free D-Ala-D-Ala carboxyl end. We screened these "OBOC inverted" peptide libraries against vancomycin, and discovered a series of peptide ligands with strong consensus, which bind vancomycin. To further optimize these ligands, two highly focused Kaa-containing OBOC combinatorial peptidomimetic libraries were designed, synthesized, and screened against vancomycin under more stringent conditions. Peptidomimetic ligands which bind vancomycin with higher affinity than Kaa were identified. The dissociation constant of one of these ligands, Lys(Ac)-HOCit-Glu-Cha-Lys(3,5-dihydroxybenzoyl)-D-Ala-D-Ala (9), as determined by surface plasmon resonance, was 1.03 microM, roughly a 50-fold improvement in affinity compared to Kaa (K(D) = 50 microM).
There is a strong link between integrins and interleukin-1β (IL-1β), but the specifics of the role of integrins in IL-1β signaling are unclear. We describe that IL-1β specifically bound to integrins αvβ3 and α5β1. The E128K mutation in the IL1R-binding site enhanced integrin binding. We studied whether direct integrin binding is involved in IL-1β signaling. We compared sequences of IL-1β and IL-1 receptor antagonist (IL1RN), which is an IL-1β homologue but has no agonistic activity. Several surface-exposed Lys residues are present in IL-1β, but not in IL1RN. A disulfide linkage is present in IL1RN, but is not in IL-1β because of natural C117F mutation. Substitution of the Lys residues to Glu markedly reduced integrin binding of E128K IL-1β, suggesting that the Lys residues mediate integrin binding. The Lys mutations reduced, but did not completely abrogate, agonistic action of IL-1β. We studied whether the disulfide linkage plays a role in agonistic action of IL-1β. Reintroduction of the disulfide linkage by the F117C mutation did not affect agonistic activity of WT IL-1β, but effectively reduced the remaining agonistic activity of the Lys mutants. Also, deletion of the disulfide linkage in IL1RN by the C116F mutation did not make it agonistic. We propose that the direct binding to IL-1β to integrins is primarily important for agonistic IL-1β signaling, and that the disulfide linkage indirectly affects signaling by blocking conformational changes induced by weak integrin binding to the Lys mutants. The integrin-IL-1β interaction is a potential target for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.