Intersection and union types are becoming more popular by the day, entering the mainstream in programming languages like TypeScript and Scala 3. Yet, no language so far has managed to combine these powerful types with principal polymorphic type inference. We present a solution to this problem in MLstruct, a language with subtyped records, equirecursive types, first-class unions and intersections, class-based instance matching, and ML-style principal type inference. While MLstruct is mostly structurally typed, it contains a healthy sprinkle of nominality for classes, which gives it desirable semantics, enabling the expression of a powerful form of extensible variants that does not need row variables. Technically, we define the constructs of our language using conjunction, disjunction, and negation connectives, making sure they form a Boolean algebra, and we show that the addition of a few nonstandard but sound subtyping rules gives us enough structure to derive a sound and complete type inference algorithm. With this work, we hope to foster the development of better type inference for present and future programming languages with expressive subtyping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.