With the increasing growth of cyber-attack incidences, it is important to develop innovative and effective techniques to assess and defend networked systems against cyber attacks. One of the well-known techniques for this is performing penetration testing which is carried by a group of security professionals (i.e, red team). Penetration testing is also known to be effective to find existing and new vulnerabilities, however, the quality of security assessment can be depending on the quality of the red team members and their time and devotion to the penetration testing. In this paper, we propose a novel automation framework for cyber-attacks generation named 'HARMer' to address the challenges with respect to manual attack execution by the red team. Our novel proposed framework, design, and implementation is based on a scalable graphical security model called Hierarchical Attack Representation Model (HARM). (1) We propose the requirements and the key phases for the automation framework. (2) We propose security metrics-based attack planning strategies along with their algorithms. (3) We conduct experiments in a real enterprise network and Amazon Web Services. The results show how the different phases of the framework interact to model the attackers' operations. This framework will allow security administrators to automatically assess the impact of various threats and attacks in an automated manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.