Vitamin K epoxide reductase (VKOR) is the target of warfarin, the most widely prescribed anticoagulant for thromboembolic disorders. Although estimated to prevent twenty strokes per induced bleeding episode, warfarin is under-used because of the difficulty of controlling dosage and the fear of inducing bleeding. Although identified in 1974 (ref. 2), the enzyme has yet to be purified or its gene identified. A positional cloning approach has become possible after the mapping of warfarin resistance to rat chromosome 1 (ref. 3) and of vitamin K-dependent protein deficiencies to the syntenic region of human chromosome 16 (ref. 4). Localization of VKOR to 190 genes within human chromosome 16p12-q21 narrowed the search to 13 genes encoding candidate transmembrane proteins, and we used short interfering RNA (siRNA) pools against individual genes to test their ability to inhibit VKOR activity in human cells. Here, we report the identification of the gene for VKOR based on specific inhibition of VKOR activity by a single siRNA pool. We confirmed that MGC11276 messenger RNA encodes VKOR through its expression in insect cells and sensitivity to warfarin. The expressed enzyme is 163 amino acids long, with at least one transmembrane domain. Identification of the VKOR gene extends our understanding of blood clotting, and should facilitate development of new anticoagulant drugs.
Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. Here, we tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across t transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between non-rewarding events is also driven by prediction errors, and that contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
Correlative studies have strongly linked phasic changes in dopamine activity with reward prediction error signaling. But causal evidence that these brief changes in firing actually serve as error signals to drive associative learning is more tenuous. While there is direct evidence that brief increases can substitute for positive prediction errors, there is no comparable evidence that similarly brief pauses can substitute for negative prediction errors. Lacking such evidence, the effect of increases in firing could reflect novelty or salience, variables also correlated with dopamine activity. Here we provide such evidence, showing in a modified Pavlovian over-expectation task that brief pauses in the firing of dopamine neurons in rat ventral tegmental area at the time of reward are sufficient to mimic the effects of endogenous negative prediction errors. These results support the proposal that brief changes in the firing of dopamine neurons serve as full-fledged bidirectional prediction error signals.
SUMMARY Imagination, defined as the ability to interpret reality in ways that diverge from past experience, is fundamental to adaptive behavior. This can be seen at a simple level in our capacity to predict novel outcomes in new situations. The ability to anticipate outcomes never before received can also influence learning if those imagined outcomes are not received. The orbitofrontal cortex is a key candidate for where the process of imagining likely outcomes occurs; however its precise role in generating these estimates and applying them to learning remain open questions. Here we address these questions by showing that single-unit activity in orbitofrontal cortex reflects novel outcome estimates. The strength of these neural correlates predicted both behavior and learning, learning which was abolished by temporally-specific inhibition of orbitofrontal neurons. These results are consistent with the proposal that the orbitofrontal cortex is critical for integrating information to imagine future outcomes.
eTOC Blurb Here, Chang et al show that blocking dopamine transients prevents learning about unexpected rewards. Learning was prevented whether it was driven by the addition of reward or by a valueless change in the flavor of the expected reward. This result is contrary to the proposal that dopamine transients act only as cached value prediction errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.