A novel route to synthesize highly active Ni2P/Al2O3 (TPP) utilizing triphenylphosphine (TPP) as the phosphorus source at a low temperature of 573 K is described.
A series of Ti-incorporated bulk Ni2P catalysts was prepared by means of temperature-programmed reduction, and the role of metallic Ti on the structure and catalytic activity of the Ni2P catalysts was studied. For this purpose, bulk Ni2P catalysts with metal Ti contents of 0.005 wt%, 0.01 wt%, and 0.02 wt% were synthesized. X-ray diffraction, CO uptake, Brunauer–Emmett–Teller measurements, and X-ray photoelectron spectroscopy were utilized to characterize the catalysts. Addition of titanium could increase the surface area and promote the formation of small, highly dispersed Ni2P particles. The Ti0.02-Ni2P system with a Ti molar fraction of 0.02 showed the highest hydrodesulfurization activity of 99.6%, which was an increase of 44% compared with that found for the bulk Ni2P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.