There is growing evidence that microRNAs are important regulators of gene expression in a variety of cell types. Using immortalized cell lines and primary neural crest cell explants, we show that microRNA-211, previously implicated in the regulation of melanoma proliferation and invasiveness, promotes pigmentation in melanoblasts and melanocytes. Expression of this microRNA is regulated by the key melanocyte transcription factor MITF and regulates pigmentation by targeting the TGF-β receptor 2. Transfection with pre-miR-211 precursor molecules in melb-a and melan-a cells leads to a decrease in the expression of TGF-β receptor 2 and reduces the TGF-β signaling-mediated downregulation of two melanogenic enzymes, tyrosinase and tyrosinase-related protein 1. Conversely, downregulation of microRNA-211 using specific microRNA inhibitors has the opposite effects. It appears, therefore, that microRNA-211 serves as a negative regulator of TGF-β signaling which is known to play a important roles in vivo in melanocyte stem cell maintenance and pigmentation.
Vertebrate eye development and homoeostasis critically depend on the regulation of proliferation of cells forming the retinal pigment epithelium (RPE). Previous results indicated that the death-associated protein like-1 DAPL1 cell autonomously suppresses RPE proliferation in vivo and in vitro. Here, we show in human RPE cell lines that the pigment cell transcription factor MITF regulates RPE cell proliferation by upregulating DAPL1 expression. DAPL1 regulation by MITF is, however, mediated predominantly by (-) MITF, one of two alternative splice isoforms of MITF that lacks six residues located upstream of the DNA-binding basic domain. Furthermore, we find that the regulation of DAPL1 by MITF is indirect in that (-) MITF stimulates the transcription of Musashi homolog-2 (MSI2), which negatively regulates the processing of the anti-DAPL1 microRNA miR-7. Our results provide molecular insights into the regulation of RPE cell proliferation and quiescence and may help us understand the mechanisms of normal RPE maintenance and of eye diseases associated with either RPE hyperproliferation or the lack of regenerative proliferation.
Background
Thalassemia is a common inherited hematological disease in tropical and subtropical regions. This study aimed to investigate the mutation spectrum of thalassemia in the Dongguan region of southern China and comprehensively analyze hematologic features of thalassemia carriers with various types of globin mutations.
Methods
A hematological screening including hematological indices such as mean corpuscular volume (MCV), mean corpuscular hemoglobin content (MCH), and mean corpuscular hemoglobin concentration (MCHC) was conducted in 19 442 people from Dongguan region, Guangdong province of China. Then, 4891 suspected thalassemia carriers were further investigated by genetic analysis of combined NGS and gap‐PCR.
Results
Totally, 2319 (11.9%) cases were diagnosed as carriers of thalassemia, of which 1483 cases (7.6%) were α‐thalassemia, 741 cases (3.8%) were β‐thalassemia, and 95 cases (0.5%) were co‐inheritance of α‐ and β‐thalassemia. In α‐thalassemia carriers, the phenotypic severity increases with the number of nonfunctional α‐globin genes. The patients with –SEA/αWSα genotype have less severe clinical phenotypes than those with other Hb H diseases. As for β‐thalassemia, the MCV and MCH in both β0 and β+ carriers are markedly reduced.
Conclusions
This is the first comprehensive molecular epidemiological survey and hematological profiling of thalassemia in Dongguan area. This study will be benefit for genetic counseling in the clinic and may help pediatricians to make a correct diagnosis of different types of thalassemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.