Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with MSTN mutations. Pigs are an important source of meat production, as well as serve as a preferred animal model for the studies of human disease. To study the impacts of MSTN mutations on skeletal muscle growth in pigs, we generated MSTN-mutant Meishan pigs with no marker gene via zinc finger nucleases (ZFN) technology. The MSTN-mutant pigs developed and grew normally, had increased muscle mass with decreased fat accumulation compared with wild type pigs, and homozygote MSTN mutant (MSTN−/−) pigs had apparent DM phenotype, and individual muscle mass increased by 100% over their wild-type controls (MSTN+/+) at eight months of age as a result of myofiber hyperplasia. Interestingly, 20% MSTN-mutant pigs had one extra thoracic vertebra. The MSTN-mutant pigs will not only offer a way of fast genetic improvement of lean meat for local fat-type indigenous pig breeds, but also serve as an important large animal model for biomedical studies of musculoskeletal formation, development and diseases.
Aims: To determine the effects of Lactobacillus fermentum I5007 on the redox state of piglets oxidatively stressed with diquat. Methods and Results: Twenty-four, 28-day-old barrows were used in a 2 9 2 factorial design experiment with the main effects being Lact. fermentum supplementation and diquat challenge. Half of the pigs (n = 12) were orally administered with 20 ml of a solution containing 10 8 CFU ml À1 ofLact. fermentum each morning of the 21-day trial, while the remainder received saline. On day 8, these two groups were further subdivided so that half of the pigs in each group (n = 6) were intraperitoneally injected with 10 mg kg À1BW diquat, while the remainder received saline. The diquat-injected pigs had significantly poorer performance and increased levels of plasma cortisol, adrenaline, carbonyl and malondialdehyde. Lactobacillus fermentum supplementation significantly increased superoxide dismutase and glutathione and increased the ability to inhibit superoxide anion production in liver and muscle. Conclusions: Lactobacillus fermentum improved the anti-oxidative defence system and alleviated damage caused by diquat. Significance and Impact of the Study: Lactobacillus fermentum has the potential to alleviate oxidative stress and improve weaning pig performance.
Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn −/− ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn −/− pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn −/− pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn −/− pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn −/− skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.